Bounded situation calculus action theories
2016, Artificial Intelligence
Abstract
In this paper, 4 we investigate bounded action theories in the situation calculus. A bounded action theory is one which entails that, in every situation, the number of object tuples in the extension of fluents is bounded by a given constant, although such extensions are in general different across the infinitely many situations. We argue that such theories are common in applications, either because facts do not persist indefinitely or because the agent eventually forgets some facts, as new ones are learnt. We discuss various classes of bounded action theories. Then we show that verification of a powerful first-order variant of the µcalculus is decidable for such theories. Notably, this variant supports a controlled form of quantification across situations. We also show that through verification, we can actually check whether an arbitrary action theory maintains boundedness.
References (88)
- Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley (1995)
- Alechina, N., Dastani, M., Khan, F., Logan, B., Meyer, J.J.: Using theorem proving to verify properties of agent programs. In: Specification and Verification of Multi-agent Systems, pp. 1-33. Springer (2010)
- Bacchus, F., Kabanza, F.: Planning for temporally extended goals. Ann. Math. Artif. Intell. 22(1-2), 5-27 (1998)
- Bagheri Hariri, B., Calvanese, D., De Giacomo, G., De Masellis, R., Felli, P.: Foundations of relational artifacts verification. In: Proc. of BPM. pp. 379-395 (2011)
- Bagheri Hariri, B., Calvanese, D., De Giacomo, G., Deutsch, A., Montali, M.: Verification of relational data-centric dynamic systems with external services. In: Proc. of PODS. pp. 163-174 (2013)
- Baier, C., Katoen, J.P., Guldstrand Larsen, K.: Principles of Model Checking. MIT Press (2008)
- Baier, J.A., McIlraith, S.A.: Planning with temporally extended goals using heuristic search. In: Proc. of ICAPS. pp. 342-345 (2006)
- Barringer, H., Fisher, M., Gabbay, D.M., Gough, G., Owens, R.: MetateM: An introduction. Formal Aspects of Computing 7(5), 533-549 (1995)
- Belardinelli, F., Lomuscio, A., Patrizi, F.: Verification of deployed artifact systems via data abstraction. In: Proc. of ICSOC. pp. 142-156 (2011)
- Belardinelli, F., Lomuscio, A., Patrizi, F.: Verification of agent-based artifact systems. J. Artif. Intell. Res. 51, 333-376 (2014) 11.
- van Benthem, J.: Modal Logic and Classical Logic. Bibliopolis (1983)
- Bienvenu, M., Fritz, C., McIlraith, S.A.: Planning with qualitative temporal preferences. In: Proc. of KR. pp. 134-144 (2006)
- de Boer, F.S., Hindriks, K.V., van der Hoek, W., Meyer, J.C.: A verification framework for agent programming with declarative goals. J. Applied Logic 5(2), 277-302 (2007)
- Bordini, R.H., Fisher, M., Pardavila, C., Wooldridge, M.: Model checking agentspeak. In: Proc. of AAMAS. pp. 409-416 (2003)
- Bordini, R.H., Hubner, J.F., Wooldridge, M.: Programming Multi-Agent Systems in AgentS- peak using Jason. Wiley (2007)
- Boutilier, C., Reiter, R., Soutchanski, M., Thrun, S.: Decision-theoretic, high-level agent programming in the situation calculus. In: Proc. of AAAI/IAAI. pp. 355-362 (2000)
- Bradfield, J., Stirling, C.: Modal mu-calculi. In: Handbook of Modal Logic, vol. 3, pp. 721- 756. Elsevier (2007)
- Burkart, O., Caucal, D., Moller, F., Steffen, B.: Verification of infinite structures. In: Hand- book of Process Algebra. pp. 545-623. Elsevier (2001)
- Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. Journal of JACM 28(1), 114-133 (1981)
- Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebas- tiani, R., Tacchella, A.: Nusmv 2: An opensource tool for symbolic model checking. In: Proc. of CAV. pp. 359-364 (2002)
- Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using branching-time temporal logic. In: Proc. of Logics of Programs, Workshop. pp. 52-71 (1981)
- Claßen, J., Lakemeyer, G.: A logic for non-terminating Golog programs. In: Proc. of KR. pp. 589-599 (2008)
- Claßen, J., Liebenberg, M., Lakemeyer, G., Zarrieß, B.: Exploring the boundaries of de- cidable verification of non-terminating Golog programs. In: Proc. of AAAI. pp. 1012-1019 (2014)
- Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. Artif. Intell. 42(2-3), 213-261 (1990)
- Dastani, M.: 2apl: a practical agent programming language. Autonomous Agents and Multi- Agent Systems 16(3), 214-248 (2008)
- De Giacomo, G., Lespérance, Y., Levesque, H.J.: ConGolog, a concurrent programming lan- guage based on the situation calculus. Artif. Intell. 121(1-2), 109-169 (2000)
- De Giacomo, G., Lespérance, Y., Patrizi, F.: Bounded situation calculus action theories and decidable verification. In: Proc. of KR. pp. 467-477 (2012)
- De Giacomo, G., Lespérance, Y., Patrizi, F.: Bounded epistemic situation calculus theories. In: Proc. of IJCAI 2013. pp. 846-853 (2013)
- De Giacomo, G., Lespérance, Y., Patrizi, F., Vassos, S.: LTL verification of online executions with sensing in bounded situation calculus. In: Proc. of ECAI. pp. 369-374 (2014)
- De Giacomo, G., Lespérance, Y., Patrizi, F., Vassos, S.: Progression and verification of situ- ation calculus agents with bounded beliefs. In: Proc. of AAMAS. pp. 141-148 (2014)
- De Giacomo, G., Lespérance, Y., Pearce, A.R.: Situation calculus based programs for repre- senting and reasoning about game structures. In: Proc. of KR. pp. 445-455 (2010)
- De Giacomo, G., Levesque, H.J.: Projection using regression and sensors. In: Proc. of IJCAI. pp. 160-165 (1999)
- De Giacomo, G., Ternovskaia, E., Reiter, R.: Non-terminating processes in the situation cal- culus. In: Proc. of the AAAI'97 Workshop on Robots, Softbots, Immobots: Theories of Ac- tion, Planning and Control. pp. 18-28 (1997)
- Demolombe, R., del Pilar Pozos Parra, M.: A simple and tractable extension of situation calculus to epistemic logic. In: Proc. of ISMIS. pp. 515-524 (2000)
- Dennis, L.A., Fisher, M., Webster, M.P., Bordini, R.H.: Model checking agent programming languages. Autom. Softw. Eng. 19(1), 5-63 (2012)
- Deutsch, A., Hull, R., Patrizi, F., Vianu, V.: Automatic verification of data-centric business processes. In: Proc. of ICDT. pp. 252-267 (2009)
- van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Springer (2008)
- Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Process-Aware Information Sys- tems: Bridging People and Software through Process Technology. Wiley (2005)
- Eisner, C., Fisman, D.: A Practical Introduction to PSL. Integrated Circuits and Systems, Springer (2006)
- Emerson, E.A.: Model checking and the mu-calculus. In: Descriptive Complexity and Finite Models. pp. 185-214. AMS, DIMACS (1996)
- Emerson, E.A., Halpern, J.Y.: "sometimes" and "not never" revisited: On branching versus linear time (preliminary report). In: Proc. of POPL'83. pp. 127-140 (1983)
- Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. Journal of Computer and System Sciences 18(2), 194-211 (1979)
- Fisher, M., Dennis, L.A., Webster, M.P.: Verifying autonomous systems. Commun. ACM 56(9), 84-93 (2013)
- Gelfond, M., Lifschitz, V.: Representing action and change by logic programs. J. Log. Pro- gram. 17(2/3&4), 301-321 (1993)
- Gerede, C.E., Su, J.: Specification and verification of artifact behaviors in business process models. In: Proc. of ICSOC. pp. 181-192 (2007)
- Gerevini, A., Long, D.: Preferences and soft constraints in pddl3. In: Proc. of ICAPS-2006 Workshop on Preferences and Soft Constraints in Planning. pp. 46-54 (2006)
- Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theories. Artif. Intell. 153(1-2), 49-104 (2004)
- Gu, Y., Kiringa, I.: Model checking meets theorem proving: a situation calculus based ap- proach. In: Proc. of 11th International Workshop on Nonmonotonic Reasoning, Action, and Change (2006)
- Gu, Y., Soutchanski, M.: Decidable reasoning in a modified situation calculus. In: Proc. of IJCAI. pp. 1891-1897 (2007)
- Hennessy, M., Milner, R.: On observing nondeterminism and concurrency. In: Proc. of ICALP. pp. 295-309 (1980)
- Herzig, A.: Belief change operations: A short history of nearly everything, told in dynamic logic of propositional assignments. In: Proc. of KR. pp. 141-150 (2014)
- Holzmann, G.J.: The model checker SPIN. IEEE Trans. Software Eng. 23(5), 279-295 (1997)
- Hull, R.: Artifact-centric business process models: Brief survey of research results and chal- lenges. In: Proc. of OTM 2008 Confederated International Conferences. pp. 1152-1163 (2008)
- Kelly, R.F., Pearce, A.R.: Property persistence in the situation calculus. Artif. Intell. 174(12- 13), 865-888 (2010)
- Kowalski, R.A., Sergot, M.J.: A logic-based calculus of events. New Generation Comput. 4(1), 67-95 (1986)
- Kvarnström, J., Doherty, P.: Talplanner: A temporal logic based forward chaining planner. Ann. Math. Artif. Intell. 30(1-4), 119-169 (2000)
- Levesque, H.J., Lakemeyer, G.: The Logic of Knowledge Bases. MIT Press (2001)
- Levesque, H.J., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.B.: GOLOG: A logic program- ming language for dynamic domains. J. Log. Program. 31, 59-84 (1997)
- Libkin, L.: Elements of Finite Model Theory. Springer (2004)
- Libkin, L.: Embedded finite models and constraint databases. In: Finite Model Theory and Its Applications, pp. 257-338. Springer (2007)
- van Linder, B., van der Hoek, W., Meyer, J.C.: Formalising abilities and opportunities of agents. Fundam. Inform. 34(1-2), 53-101 (1998)
- Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: A model checker for the verification of multi- agent systems. In: Proc. of CAV. pp. 682-688 (2009)
- Marrella, A., Mecella, M., Sardiña, S.: Smartpm: An adaptive process management sys- tem through situation calculus, indigolog, and classical planning. In: Proc, of KR. pp. 1-10 (2014)
- McCarthy, J., Hayes, P.J.: Some Philosophical Problems From the StandPoint of Artificial Intelligence. Machine Intelligence 4, 463-502 (1969)
- McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld, D., Wilkins, D.: PDDL-the planning domain definition language. Tech. Rep. CVC TR98003/DCS TR1165, Yale Center for Computational Vision and Control (1998)
- Pirri, F., Reiter, R.: Some contributions to the metatheory of the situation calculus. J. ACM 46(3), 261-325 (1999)
- Pistore, M., Traverso, P.: Planning as model checking for extended goals in non-deterministic domains. In: Proc. of IJCAI. pp. 479-484 (2001)
- Pnueli, A.: The temporal logic of programs. In: Proc. of FOCS. pp. 46-57 (1997)
- Rao, A.S.: Agentspeak(l): BDI agents speak out in a logical computable language. In: Proc. of Agents Breaking Away, 7th European Workshop on Modelling Autonomous Agents in a Multi-Agent World. pp. 42-55 (1996)
- Rao, A.S., Georgeff, M.P.: Modeling rational agents within a bdi-architecture. In: Proc. of KR. pp. 473-484 (1991)
- Rao, A., Georgeff, M.: An abstract architecture for rational agents. In: Proc. of KR. pp. 439- 449 (1992)
- Reiter, R.: The frame problem in the situation calculus: A simple solution (sometimes) and a completeness result for goal regression. In: Artificial Intelligence and Mathematical Theory of Computation: Papers in Honor of John McCarthy, pp. 359-380. Academic Press (1991)
- Reiter, R.: Knowledge in Action. Logical Foundations for Specifying and Implementing Dy- namical Systems. MIT Press (2001)
- Reiter, R.: Natural actions, concurrency and continuous time in the situation calculus. In: Proc. of KR. pp. 2-13 (1996)
- Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd ed. Prentice Hall (2010)
- Sandewall, E.: Features and Fluents. Oxford University Press, New York (1994)
- Sardiña, S., De Giacomo, G.: Composition of ConGolog programs. In: Proc. of IJCAI. pp. 904-910 (2009)
- Scherl, R.B., Levesque, H.J.: Knowledge, action, and the frame problem. Artif. Intell. 144(1- 2), 1-39 (2003)
- Shanahan, M.: Solving the frame problem -a mathematical investigation of the common sense law of inertia. MIT Press (1997)
- Shanahan, M.: The event calculus explained. In: Artificial Intelligence Today, pp. 409-430. Springer (1999)
- Shapiro, S., Lespérance, Y., Levesque, H.: The cognitive agents specification language and verification environment. In: Specification and Verification of Multi-agent Systems, pp. 289- 315. Springer (2010)
- Shapiro, S., Lespérance, Y., Levesque, H.J.: The cognitive agents specification language and verification environment for multiagent systems. In: Proc. of AAMAS. pp. 19-26 (2002)
- Shapiro, S., Pagnucco, M., Lespérance, Y., Levesque, H.J.: Iterated belief change in the sit- uation calculus. Artif. Intell. 175(1), 165-192 (2011)
- Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific J. of Mathemat- ics 5(2), 285-309 (1955)
- Ternovskaia, E.: Automata theory for reasoning about actions. In: Proc. of IJCAI. pp. 153- 159 (1999)
- Thielscher, M.: From situation calculus to fluent calculus: State update axioms as a solution to the inferential frame problem. Artif. Intell. 111(1-2), 277-299 (1999)
- Visser, W., Havelund, K., Brat, G.P., Park, S., Lerda, F.: Model checking programs. Autom. Softw. Eng. 10(2), 203-232 (2003)
- Wooldridge, M.: Reasoning about Rational Agents. MIT Press (2000)