Academia.eduAcademia.edu

Outline

On the general theory of data interpolation

1997, SEP-94: Stanford Exploration Project

Abstract
sparkles

AI

This research introduces a mathematical framework for data interpolation, particularly in geophysical contexts where irregularly sampled data must be converted to a regular grid. It explores the foundations of function bases and provides essential formulas applicable to higher dimensions, highlighting their significance in 3-D seismic data interpretation. Potential applications of this interpolation theory in geophysics are discussed, with an emphasis on azimuth moveout.

References (16)

  1. Biondi, B., Fomel, S., and Chemingui, N., 1996, Azimuth moveout for 3-D prestack imaging: SEP-93, 15-44.
  2. Chemingui, N., and Biondi, B., 1996, Handling the irregular geometry in wide azimuth sur- veys: 66th Annual Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 32-35.
  3. Claerbout, J. F., 1992, Earth Soundings Analysis: Processing Versus Inversion: Blackwell Scientific Publications.
  4. Daubechies, I., 1992, Ten lectures on wavelets: SIAM, Philadelphia, Pennsylvania.
  5. de Boor, C., 1978, A practical guide to splines: Springer-Verlag.
  6. Fomel, S., and Biondi, B. L., 1995, The time and space formulation of azimuth moveout: 65th Ann. Internat. Meeting, Soc. Expl. Geophys., Expanded Abstracts, 1449-1452.
  7. Fomel, S., and Claerbout, J., 1996, Simple linear operators in Fortran 90: SEP-93, 317-328.
  8. Fomel, S., 1996, Stacking operators: Adjoint versus asymptotic inverse: SEP-92, 267-292.
  9. Gardner, G. H. F., and Canning, A. J., 1994, Effects of irregular sampling on 3-D prestack migration: 64th Annual Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1553- 1556.
  10. Hale, I. D., 1980, Resampling irregularly sampled data: SEP-25, 39-58.
  11. Harlan, W. S., 1982, Avoiding interpolation artifacts in Stolt migration: SEP-30, 103-110.
  12. Karrenbach, M., 1995, Elastic tensor wave fields: Ph.D. thesis, Stanford University.
  13. Lin, J., Teng, L., and Muir, F., 1993, Comparison of different interpolation methods for Stolt migration: SEP-79, 255-260.
  14. Popovici, A. M., Blondel, P., and Muir, F., 1993, Interpolation in Stolt migration: SEP-79, 261-264.
  15. Ronen, S., Sorin, V., and Bale, R., 1991, Spatial dealiasing of 3-D seismic reflection data: Geophysical Journal International, pages 503-511.
  16. Ronen, S., Nichols, D., Bale, R., and Ferber, R., 1995, Dealiasing DMO: Good-pass, bad-pass, and unconstrained: 65th Annual Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 743-746.