Academia.eduAcademia.edu

Outline

3D object indexing and recognition

2008, Applied Mathematics and …

https://doi.org/10.1016/J.AMC.2007.05.062

Abstract

In this paper, we address the problem of 3D object recognition from a single 2D image using models database. We propose a method based on geometric quasi-invariant features of the 2D images. We index the 2D images in a model base using a modified quad-tree technique that enhance the research process. The final vote that matches the 2D object image to the 3D object of the database is solved by a vector approximation file which overcomes the difficulties of high dimensionality by following not the data partitioning approach of conventional index methods, but rather as filter based approach.

References (30)

  1. M. Daoudi, S. Matusiak, New multiscale planar shape invariant representation under a general affine transformations, in: ICPR'2000, Barcelona, September 3, 2000, pp. 794-797.
  2. Y. Lamdan, H.J. Wolfson, Geometric hashing: a general and efficient model based recognition scheme, in: ICCV'88 Second International Conference on Computer Vision, 1988.
  3. S. Matusiak, New multiscale planar shape invariant representation under a general affine transformations, 1999.
  4. B. Lamiroy, P. Gros, Rapid object indexing and recognition using enhanced geometric hashing, in: Fourth Conference on Computer Vision, Cambridge, England, 1996.
  5. S. Berchtold, C. Bohm, H.P. Kriegel, The pyramid-technique: towards Breaking the Curse of dimensionality, in: Proceedings of the International Conference on Management of Data, ACM SIGMOD, Seattle, Washington, 1998.
  6. R. Weber, H.J. Schek, S. Blott, A quantitative analysis and performance study for similarity-search methods in high dimensional spaces, in: Proceedings of the 24th VLDB International Conference on Very Large Data Bases, New York, US, August 1998.
  7. L. Amsaleg, P. Gros, S.-A. Berrani, A robust technique to recognise objects in images, and the DB problems it raises, in: Proceedings of the Workshop on Multimedia Information Systems, Capri, Italie, November 2001.
  8. B. Lamiroy, P. Gros, S. Picard, Combining local recognition methods for better image recognition, in: British Machine Vision Conference, BMVC'2000, vol. 2, Bristol, UK, September 2000, pp. 735-744.
  9. P. Gros, New descriptors for image and video indexing, Dagstuhl Seminar on Content-Based Image and Video Retrieval, Dagstuhl, Germany, December 1999.
  10. P. Gros, Using quasi-invariant for automatic model building and object recognition: an overview, in: Proceedings of the NSF-ARPA Workshop on Object Representations in Computer Vision, New York, USA, December 1.
  11. P. Gros, L. Quan, 3D projective invariant from two images, in: Proceedings of the SPIE Conference on Geometric Methods in Computer Vision II, San Diego, California, USA, July 1993, pp. 75-86.
  12. K. Astro ¨m, Affine and projective normalization of planar curves and regions, in: Proceedings of the Third European Conference on Computer Vision, Stockholm, Sweden, May 1994.
  13. Joseph L. Mondey, Andrew Zisserman, Geometric Invariance in Computer Vision, MIT Press, 1992.
  14. E. Tuncel, H. Ferhatosmanoglu, K. Rose, VQ-index: an index structure for similarity searching in multimedia databases, ACM Multimedia, Juan Les Pins, France, December 2002.
  15. M.J. Fonseca, J.A. Jorge, Towards content based retrieval of technical drawings through high dimensional indexing, Computers and Graphics (2003).
  16. C. Li, E. Chang, H. Garcia-Molina, G. Wiederhold, Clustering approach for approximate similarity search in high dimensional spaces, IEEE Transactions on Knowledge and Data Engineering 14 (4) (2002) 792-808.
  17. N. Katayama, S. Satoh, Distinctiveness-sensitive nearest neighbor search for efficient similarity retrieval of multimedia information, ICDE, 2001, pp. 493-502.
  18. R. Bellman, Adaptive Control Processes: A guided Tour, Princeton University Press, 1961.
  19. T.O. Binford, T.S. Levitt, Quasi invariants: theory and exploitation, in: Proceedings of DARPA Image Understanding Workshop, 1993.
  20. H. Murase, S.K. Nayar, Visual learning and recognition of 3D objects from appearance, International Journal of Computer Vision (1995).
  21. A.R. Pope, D.G. Lowe, Learning object recognition models from images, in: ICCV'93, Fourth International Conference on Computer Vision, 1993.
  22. H. Sossa, Reconnaissance d'objets polyhe ´driques dans une base de mode `les, The `se de doctorat, Institut National Polytechnique de Grenoble, De ´cembre 1997.
  23. N. Beckmann, H. Kriegel, R. Schneider, B. Seeger, The R * tree: an efficient and robust access method for points and rectangles, in: Proceedings of the ACM Sigmod International Conference on Management of Data, May 23-25 1990.
  24. S. Berchtold, D. Keim, H.P. Kriegel, The X-tree: an index structure for high dimensional data, in: Proceedings of the International Conference on Very Large Data Bases, Bombay, India, 1996.
  25. K. Chakrabarti, S. Mehrotra, The hybrid tree: an index structure for high dimensional feature spaces, in: Proceedings of the International Conference on Data Engineering, Australia, 1999.
  26. A. Guttman, R-trees: a dynamic index structure for spatial searching, in: Proceedings of the ACM SIGMOD International Conference on Management of Data, 1984.
  27. K. Lin, V. Jagadish, C. Faloutos, The TV-tree: an index structure for high dimensional data, VLDB Journal (1995).
  28. D.B. Lomet, B. Salzberg, The Hb-tree: a multi attribute indexing method with good guaranteed performance, ACM Transactions on Database Systems (1990), December.
  29. J.T. Robinson, The Kdb-tree: a search structure for large multi dimensional indexes, in: Proceedings of the ACM SIGMOD International Conference on Management of Data, 1981.
  30. D. White, R. Jain, Similarity indexing the SS-tree, in: Proceedings of the International Conference on Data Engineering, 1996.