3D object indexing and recognition
2008, Applied Mathematics and …
https://doi.org/10.1016/J.AMC.2007.05.062Abstract
In this paper, we address the problem of 3D object recognition from a single 2D image using models database. We propose a method based on geometric quasi-invariant features of the 2D images. We index the 2D images in a model base using a modified quad-tree technique that enhance the research process. The final vote that matches the 2D object image to the 3D object of the database is solved by a vector approximation file which overcomes the difficulties of high dimensionality by following not the data partitioning approach of conventional index methods, but rather as filter based approach.
References (30)
- M. Daoudi, S. Matusiak, New multiscale planar shape invariant representation under a general affine transformations, in: ICPR'2000, Barcelona, September 3, 2000, pp. 794-797.
- Y. Lamdan, H.J. Wolfson, Geometric hashing: a general and efficient model based recognition scheme, in: ICCV'88 Second International Conference on Computer Vision, 1988.
- S. Matusiak, New multiscale planar shape invariant representation under a general affine transformations, 1999.
- B. Lamiroy, P. Gros, Rapid object indexing and recognition using enhanced geometric hashing, in: Fourth Conference on Computer Vision, Cambridge, England, 1996.
- S. Berchtold, C. Bohm, H.P. Kriegel, The pyramid-technique: towards Breaking the Curse of dimensionality, in: Proceedings of the International Conference on Management of Data, ACM SIGMOD, Seattle, Washington, 1998.
- R. Weber, H.J. Schek, S. Blott, A quantitative analysis and performance study for similarity-search methods in high dimensional spaces, in: Proceedings of the 24th VLDB International Conference on Very Large Data Bases, New York, US, August 1998.
- L. Amsaleg, P. Gros, S.-A. Berrani, A robust technique to recognise objects in images, and the DB problems it raises, in: Proceedings of the Workshop on Multimedia Information Systems, Capri, Italie, November 2001.
- B. Lamiroy, P. Gros, S. Picard, Combining local recognition methods for better image recognition, in: British Machine Vision Conference, BMVC'2000, vol. 2, Bristol, UK, September 2000, pp. 735-744.
- P. Gros, New descriptors for image and video indexing, Dagstuhl Seminar on Content-Based Image and Video Retrieval, Dagstuhl, Germany, December 1999.
- P. Gros, Using quasi-invariant for automatic model building and object recognition: an overview, in: Proceedings of the NSF-ARPA Workshop on Object Representations in Computer Vision, New York, USA, December 1.
- P. Gros, L. Quan, 3D projective invariant from two images, in: Proceedings of the SPIE Conference on Geometric Methods in Computer Vision II, San Diego, California, USA, July 1993, pp. 75-86.
- K. Astro ¨m, Affine and projective normalization of planar curves and regions, in: Proceedings of the Third European Conference on Computer Vision, Stockholm, Sweden, May 1994.
- Joseph L. Mondey, Andrew Zisserman, Geometric Invariance in Computer Vision, MIT Press, 1992.
- E. Tuncel, H. Ferhatosmanoglu, K. Rose, VQ-index: an index structure for similarity searching in multimedia databases, ACM Multimedia, Juan Les Pins, France, December 2002.
- M.J. Fonseca, J.A. Jorge, Towards content based retrieval of technical drawings through high dimensional indexing, Computers and Graphics (2003).
- C. Li, E. Chang, H. Garcia-Molina, G. Wiederhold, Clustering approach for approximate similarity search in high dimensional spaces, IEEE Transactions on Knowledge and Data Engineering 14 (4) (2002) 792-808.
- N. Katayama, S. Satoh, Distinctiveness-sensitive nearest neighbor search for efficient similarity retrieval of multimedia information, ICDE, 2001, pp. 493-502.
- R. Bellman, Adaptive Control Processes: A guided Tour, Princeton University Press, 1961.
- T.O. Binford, T.S. Levitt, Quasi invariants: theory and exploitation, in: Proceedings of DARPA Image Understanding Workshop, 1993.
- H. Murase, S.K. Nayar, Visual learning and recognition of 3D objects from appearance, International Journal of Computer Vision (1995).
- A.R. Pope, D.G. Lowe, Learning object recognition models from images, in: ICCV'93, Fourth International Conference on Computer Vision, 1993.
- H. Sossa, Reconnaissance d'objets polyhe ´driques dans une base de mode `les, The `se de doctorat, Institut National Polytechnique de Grenoble, De ´cembre 1997.
- N. Beckmann, H. Kriegel, R. Schneider, B. Seeger, The R * tree: an efficient and robust access method for points and rectangles, in: Proceedings of the ACM Sigmod International Conference on Management of Data, May 23-25 1990.
- S. Berchtold, D. Keim, H.P. Kriegel, The X-tree: an index structure for high dimensional data, in: Proceedings of the International Conference on Very Large Data Bases, Bombay, India, 1996.
- K. Chakrabarti, S. Mehrotra, The hybrid tree: an index structure for high dimensional feature spaces, in: Proceedings of the International Conference on Data Engineering, Australia, 1999.
- A. Guttman, R-trees: a dynamic index structure for spatial searching, in: Proceedings of the ACM SIGMOD International Conference on Management of Data, 1984.
- K. Lin, V. Jagadish, C. Faloutos, The TV-tree: an index structure for high dimensional data, VLDB Journal (1995).
- D.B. Lomet, B. Salzberg, The Hb-tree: a multi attribute indexing method with good guaranteed performance, ACM Transactions on Database Systems (1990), December.
- J.T. Robinson, The Kdb-tree: a search structure for large multi dimensional indexes, in: Proceedings of the ACM SIGMOD International Conference on Management of Data, 1981.
- D. White, R. Jain, Similarity indexing the SS-tree, in: Proceedings of the International Conference on Data Engineering, 1996.