Abstract
Let f (n, m) be the cardinality of largest subset of {1, 2,. .. ,n} which does not contain a subset whose elements sum to m. In this note, we show that f (n, m) = 1 + o(1) n snd(m) for all n(log n) 1+ m n 2 9 log 2 n , where snd(m) is the smallest integer that does not divide m. This proves a conjecture of Alon posed in [N. Alon, Subset sums, J. Number Theory 27 (2) (1987) 196-205].
References (18)
- N. Alon, Subset sums, J. Number Theory 27 (2) (1987) 196-205.
- N. Alon, G. Freiman, On sums of subsets of a set of integers, Combinatorica 8 (4) (1988) 297-306.
- J. Bourgain, On arithmetic progressions in sums of sets of integers, in: A Tribute to Paul Erd ős, Cambridge Univ. Press, Cambridge, 1990, pp. 105-109.
- Paul Erd ős, Some problems and results on combinatorial number theory, in: Graph Theory and Its Applications: East and West, Jinan, 1986, in: Ann. New York Acad. Sci., vol. 576, New York Acad. Sci., New York, 1989, pp. 132-145.
- Paul Erd ős, Gregory Freiman, On two additive problems, J. Number Theory 34 (1) (1990) 1-12.
- G.A. Freiman, H. Halberstam, I.Z. Ruzsa, Integer sum sets containing long arithmetic progressions, J. London Math. Soc. (2) 46 (2) (1992) 193-201.
- E. Lipkin, On representation of rth powers by subset sums, Acta Arith. 52 (4) (1989) 353-365.
- Leo Moser, Peter Scherk, Advanced problems and solutions: Solutions: 4466, Amer. Math. Monthly 62 (1) (1955) 46-47.
- Hoi H. Nguyen, Endre Szemerédi, Van H. Vu, Subset sums modulo a prime, Acta Arith. 131 (4) (2008) 303-316.
- Hoi H. Nguyen, Van H. Vu, Classification theorems for sumsets modulo a prime, J. Combin. Theory Ser. A (2009), doi:10.1016/j.jcta.2008.12.002, in press.
- K.F. Roth, On certain sets of integers, J. London Math. Soc. 28 (1953) 104-109.
- A. Sárközy, Finite addition theorems. I, J. Number Theory 32 (1) (1989) 114-130.
- A. Sárközy, Finite addition theorems. III, in: Groupe de Travail en Théorie Analytique et Élémentaire des Nombres, 1989- 1990, in: Publ. Math. Orsay, vol. 92, Univ. Paris XI, Orsay, 1992, pp. 105-122.
- A. Sárközy, Finite addition theorems. II, J. Number Theory 48 (2) (1994) 197-218.
- E. Szemerédi, V. Vu, Long arithmetic progressions in sumsets: Thresholds and bounds, J. Amer. Math. Soc. 19 (1) (2006) 119-169 (electronic).
- E. Szemerédi, V.H. Vu, Long arithmetic progressions in sum-sets and the number of x-sum-free sets, Proc. London Math. Soc. (3) 90 (2) (2005) 273-296.
- E. Szemerédi, V.H. Vu, Finite and infinite arithmetic progressions in sumsets, Ann. of Math. (2) 163 (1) (2006) 1-35.
- Van H. Vu, A structural approach to subset-sum problems, in: Martin Grötschel, Gyula O.H. Katona (Eds.), Building Bridges: Between Mathematics and Computer Science, in: Bolyai Soc. Math. Stud., vol. 19, Springer, 2008, pp. 525-545.