Academia.eduAcademia.edu

Outline

Multivariate Affine Fractal Interpolation

2020, Fractals

https://doi.org/10.1142/S0218348X20501364

Abstract

Fractal interpolation functions capture the irregularity of some data very effectively in comparison with the classical interpolants. They yield a new technique for fitting experimental data sampled from real world signals, which are usually difficult to represent using the classical approaches. The affine fractal interpolants constitute a generalization of the broken line interpolation, which appears as a particular case of the linear self-affine functions for specific values of the scale parameters. We study the [Formula: see text] convergence of this type of interpolants for [Formula: see text] extending in this way the results available in the literature. In the second part, the affine approximants are defined in higher dimensions via product of interpolation spaces, considering rectangular grids in the product intervals. The associate operator of projection is considered. Some properties of the new functions are established and the aforementioned operator on the space of contin...

References (38)

  1. M. F. Barnsley, Fractal functions and interpolation, Constr. Approx. 2(4) (1986) 303-329.
  2. C. J. G. Evertsz, Fractal Geometry of finacial time series, Fractals 3(3) (1995) 609-616.
  3. J. L. Véhel, K. Daoudi and E. Lutton, Fractal modeling of speech signals, Fractals 2(3) (1994) 379-382.
  4. G. W. Wornell, Signal processing with fractals: A Wavelet based approach, Prentice Hall (1995).
  5. L. Xin-Fu and L. Xiao-Fan, Seismic data reconstruction with fractal interpolation, Chin. J. Geophys. 51(4) (2008) 855-861.
  6. L. L. Yong and T. Xin, Fractal fitting research on stock prices, in 2008 Congress on image and signal processing, 4 (2008) 49-53.
  7. A. V. Tetenov, Self-similar Jordan arcs and graph-directed systems of similarities, Sib. Math. J. 47(5) (2006) 940-949.
  8. H. Y. Wang and J.S. Yu, Fractal interpolation functions with variable parameters and their analytical properties, J. Approx. Theory 175 (2005) 118.
  9. P. R. Massopust, Fractal Functions, Fractal Surfaces, and Wavelets, 2nd edn. Academic Press, San Diego (1994).
  10. P. R. Massopust, Interpolation and Approximation with Splines and Fractals, Oxford Uni- versity Press, Oxford (2010).
  11. P. R. Massopust, Local fractal interpolation on unbounded domains, Proc. Edinb. Math. Soc. 61(1) (2018) 151-167.
  12. M. A. Navascués and M. V. Sebastián, Generalization of Hermite functions by fractal inter- polation, J. Approx. Theory 131(1) (2004) 19-29.
  13. M. A. Navascués and M. V. Sebastián, Smooth fractal interpolation, J. Inequal. Appl. Article ID 78734 (2006) 1-20.
  14. A. J. Kurdila, T. Sun, P. Grama and J. Ko, Affine fractal interpolation functions and wavelet- based finite elements, Comput. Mech. 17(3) (1995) 165-189.
  15. L. Dalla, On the parameter identification problem in the plane and the polar fractal interpo- lation functions, J. Approx. Theory 101 (1999) 289-302.
  16. M. A. Navascués and M. V. Sebastián, Error bounds for affine fractal interpolation, Math. Ineq. Appl. 9(2) (2006) 273-288.
  17. M. A. Navascués and M. V. Sebastián, Construction of affine fractal functions close to classical interpolants, J. Comp. Anal. Appl. 9(3) (2007) 271-285.
  18. X. Chen, Q. Guo, and L. Xi, The range of an affine fractal interpolation function, Int. J. Nonlinear Sci. 3(3) (2007) 181186.
  19. D. S. Mazel and M. H. Hayes, Using iterated function systems to model discrete sequences, IEEE Trans. Signal Process. 40 (1992) 1724-1734.
  20. J. L. Véhel, K. Daoudi and E. Lutton, Fractal modeling of speech signals, Fractals 2 (1994) 379-382.
  21. M. Ali and T. G. Clarkson, Using linear fractal interpolation functions to compress video images, Fractals 2 (1994) 417-421.
  22. A. K. B. Chand, S. K. Katiyar and Saravana Kumar G., A new class of rational fractal function for curve fitting, Proceeding of Computer Aided Engineering CAE 2013, ISBN No. 78-93-80689-17-3.
  23. A. K. B. Chand, S. K. Katiyar and P. Viswanathan, Approximation using hidden variable fractal interpolation functions, J. Fractal Geom. 2(1) (2015) 81-114.
  24. A. K. B. Chand, M. A. Navascués, P. Viswanathan and S. K. Katiyar, Fractal trigonometric polynomial for restricted range approximation, Fractals 24(2) (2016) 1-11.
  25. M. A. Navascués, P. Viswanathan, A. K. B. Chand, M. V. Sebastián, and S. K. Katiyar, Fractal bases for Banach spaces of smooth functions, Bull. Aust. Math. Society 92 (2015) 405-419.
  26. A. K. B. Chand and S. K. Katiyar, Quintic Hermite fractal interpolation in a strip: preserving copositivity, Springer Proc. Math. Stat. 143 (2015) 463-475.
  27. S. K. Katiyar and A. K. B. Chand, Toward a unified methodology for fractal extension of various shape preserving spline interpolants, Springer Proc. Math. Stat., 139 (2015) 223-238.
  28. S. K. Katiyar, A. K. B. Chand and M. A. Navascués, Hidden Variable A-Fractal Functions and Their Monotonicity Aspects, Rev. R. Acad. Cienc. Zaragoza 71 (2016) 7-30.
  29. A C C E P T E D M A N S C I P Accepted manuscript to appear in FRACTALS
  30. S. K. Katiyar and A. K. B. Chand, A new class of monotone/convex rational fractal func- tion,arXiv:1809.10682.
  31. S. K. Katiyar, Bicubic partially blended rational quartic surface, arXiv:1910.09822.
  32. S. K. Katiyar, A. K. B. Chand and Saravana Kumar G., A new class of rational cubic spline fractal interpolation function and its constrained aspects, Appl. Math. Comp. 346 (2019) 319-335.
  33. S. K. Katiyar and A. K. B. Chand, Shape Preserving Rational Quartic Fractal Functions, Fractals 27(8) (2019) 1-15.
  34. E. W. Cheney, Approximation Theory, AMS Chelsea Publ. (1966).
  35. P. J. Davis, Interpolation and Approximation, Dover Publ. (1963).
  36. G. Chen, The smoothness and dimension of fractal interpolation functions, Appl. Math-JCU 11B (1996) 409-418.
  37. L. P. Lebedev, I. I. Vorovich and G. M. L. Gladwell, Functional Analysis, Kluwer Academic Publ., 2nd. ed. (2002).
  38. V. Hutson and J. S. Pym, Applications of Functional Analysis and Operator Theory, Aca- demic Press (1980).