Academia.eduAcademia.edu

Outline

Potassium-Ion Batteries: Key to Future Large-Scale Energy Storage?

2020, ACS Applied Energy Materials

https://doi.org/10.1021/ACSAEM.0C01574

Abstract

The demand for large scale, sustainable, eco-friendly and safe energy storage systems are ever increasing. Currently, lithium-ion battery (LIB) is being used in large scale for various applications due to its unique features. However, its feasibility and viability as a long-term solution is under question due to the dearth and uneven geographical distribution of the lithium resources. It is in this context that alternative energy storage systems become significant. Potassium-ion battery (KIB) is one of the latest entrants into this arena. Researchers have demonstrated that this technology has potential to become a competing technology to the LIBs and sodium ion batteries (NIB). This review summarizes the research progress achieved in this technology including electrode materials, electrolyte, binders etc. along with a brief discussion about the future prospects and opportunities.

FAQs

sparkles

AI

What advantages do potassium-ion batteries have over lithium-ion batteries?add

Potassium-ion batteries (KIBs) exhibit lower raw material costs due to potassium's abundance, and they demonstrate relatively high energy density with competitive electrochemical performance, as shown by standard reduction potentials nearing that of lithium.

How do potassium-ion battery costs compare to lithium-ion batteries?add

The paper indicates that KIBs are generally cheaper than lithium-based systems due to the low cost of potassium carbonate salts compared to lithium salts, along with potassium's greater natural abundance.

What cathode materials have been studied for potassium-ion batteries?add

Research has focused on hexacyanoferrate derivatives like Prussian Blue, which maintains good electrochemical behavior, demonstrating a discharge voltage of 3.9 V and 95% capacity retention after 100 cycles.

How does the electrochemical performance of potassium-ion batteries evolve?add

Studies reveal that KIBs display improved ionic conductivity and rate capability due to smaller solvated potassium ions, which enhance ionic mobility compared to other alkali metals.

Why is the energy density of potassium-ion batteries a concern?add

Despite their benefits, KIBs face challenges due to lower energy densities compared to lithium-ion systems, which limits their applications in energy-dense sectors like electric vehicles.

References (114)

  1. Zou, X., Xiong, P., Zhao, J., Hu, J., Liu, Z., Xu, Y., Recent research progress in non- aqueous potassium-ion batteries. Phys. Chem. Chem. Phys., 2017, 19, 26495.
  2. Zhang, W., Liu, Y., Guo, Z., Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv., 2019, 5, eaav7412.
  3. Marcus, Y., Thermodynamic Functions of Transfer of Single Ions from Water to Non-aqueous and Mixed Solvents: Part 3-Standard Potentials of Selected Electrodes. Pure Appl. Chem., 1985, 57, 1129-1132.
  4. Matsuura, N., Umemoto, K., Takeuchi, Z i., Standard Potentials of Alkali Metals, Silver, and Thallium Metal/Ion Couples in N, N'-Dimethylformamide, Dimethyl Sulfoxide, and Propylene Carbonate. Bull. Chem. Soc. Jpn., 1974, 47, 813-817.
  5. Komaba, S., Hasegawa, T., Dahbi, M., Kubota, K., Potassium Intercalation into Graphite to Realize High-voltage/high-power Potassium-ion Batteries and Potassium- ion Capacitors. Electrochem. Commun., 2015, 60, 172-175.
  6. Kubota, K., Dahbi, M., Hosaka, T., Kumakura, S., Komaba, S., Towards K-Ion and Na Ion Batteries as "Beyond Li-Ion". Chem. Rec. 2018, 18, 459-479.
  7. Eftekhari, A., Jian, Z., Ji, X., Potassium Secondary Batteries. ACS Appl. Mater. Interfaces, 2017, 9, 4404-4419.
  8. Okoshi, M., Yamada, Y., Komaba, S., Yamada, A., Nakai, H., Theoretical Analysis of Interactions between Potassium Ions and Organic Electrolyte Solvents: A Comparison with Lithium, Sodium, and Magnesium Ions. J. Electrochem. Soc., 2017, 164, A54-A60.
  9. Jian, Z., Luo, W., Ji, X., Carbon Electrodes for K-Ion Batteries. J. Am. Chem. Soc., 2015, 137, 11566-11569.
  10. Wen, Y., He, K., Zhu, Y., Han, F., Xu, Y., Matsuda, I., Ishii, Y., Cumings, J., Wang, C., Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun., 2014, 5, 4033.
  11. Jian, Z., Xing, Z., Bommier, C., Li, Z., Ji, X., Hard Carbon Microspheres: Potassium- Ion Anode versus Sodium-Ion Anode. Adv. Energy Mater., 2016, 6, 1501874- 1501878.
  12. Eftekhari, A., Potassium Secondary Cell Based on Prussian Blue Cathode. J. Power Sources, 2004, 126, 221-228.
  13. Vaalma, C., Giffin, G. A., Buchholz, D., Passerini, S., Non-Aqueous K-Ion Battery Based on Layered K 0.3 O 2 and Hard Carbon/Carbon Black. J. Electrochem. Soc., 2016, 163, A1295-A1299.
  14. Wang, X., Xu, X., Niu, C., Meng, J., Huang, M., Liu, X., Liu, Z., Mai, L., Earth Abundant Fe/Mn-Based Layered Oxide Interconnected Nanowires for Advanced K- Ion Full Batteries. Nano Lett., 2017, 17, 544-550.
  15. Hironaka, Y., Kubota, K., Komaba, S., P 2 -and P 3 -K x CoO 2 as an Electrochemical Potassium Intercalation Host. Chem. Commun., 2017, 53, 3693-3696.
  16. Recham, N., Rousse, G. l., Sougrati, M. T., Chotard, J.-N. l., Frayret, C., Mariyappan, S., Melot, B. C., Jumas, J.-C., Tarascon, J.-M., Preparation and Characterization of a Stable FeSO 4 F-Based Framework for Alkali Ion Insertion Electrodes. Chem. Mater., 2012, 24, 4363-4370.
  17. Mathew, V., Kim, S., Kang, J., Gim, J., Song, J., Baboo, J. P., Park, W., Ahn, D., Han, J., Gu, L., Wang, Y., Hu, Y-S., Sun, Y-K., Kim, J., Amorphous Iron Phosphate: Potential Host for Various Charge Carrier Ions. NPG Asia Mater., 2014, 6, e138-e147. Page 34 of 46
  18. Han, J., Li, G.-N., Liu, F., Wang, M., Zhang, Y., Hu, L., Dai, C., Xu, M., Investigation of K 3 V 2 (PO 4 ) 3 /C Nanocomposites as High-Potential Cathode Materials for Potassium-Ion Batteries. Chem. Commun., 2017, 53, 1805-1808.
  19. Chen, Y., Luo, W., Carter, M., Zhou, L., Dai, J., Fu, K., Lacey, S., Li, T., Wan, J., Han, X., Bao, Y., Hu, L., Organic Electrode for Non-Aqueous Potassium-Ion Batteries. Nano Energy, 2015, 18, 205-211.
  20. Xing, Z., Jian, Z., Luo, W., Qi, Y., Bommier, C., Chong, E. S., Li, Z., Hu, L., Ji, X., A Perylene Anhydride Crystal as a Reversible Electrode for K-Ion Batteries. Energy Storage Mater., 2016, 2, 63-68.
  21. Jian, Z., Liang, Y., Rodríguez-Pérez, I. A., Yao, Y., Ji, X., Poly(Anthraquinonyl Sulfide) Cathode for Potassium-Ion Batteries. Electrochem. Commun., 2016, 71, 5-8.
  22. X, Wu., D, P, Leonard., X, Ji., Emerging Non-Aqueous Potassium-Ion Batteries: Challenges and Opportunities. Chem. Mater., 2017, 29, 5031-5042.
  23. Lu, Y., Wang, L., Cheng, J., Goodenough, J. B., Prussian Blue: A New Framework of Electrode Materials for Sodium Batteries. Chem. Commun., 2012, 48, 6544-6.
  24. Itaya, K., Ataka, T., Toshima, S., Spectro-electrochemistry and Electrochemical Preparation Method of Prussian Blue Modified Electrodes. J. Am. Chem. Soc., 1982, 104, 4767-4772.
  25. Piernas-Muñoz, M. J., Castillo-Martínez, E., Bondarchuk, O., Armand, M., Rojo, T., Higher Voltage Plateau Cubic Prussian White for Na-Ion Batteries. J. Power Sources. 2016, 324, 766-773.
  26. Liao, J.-Y., Hu, Q., Zou, B.-K., Xiang, J.-X., Chen, C.-H., The Role of Potassium Ions in Iron Hexacyanoferrate as a Cathode Material for Hybrid Ion Batteries. Electrochim. Acta.,2016, 220, 114-121.
  27. Ling, C., Chen, J., Mizuno, F., First-Principles Study of Alkali and Alkaline Earth Ion Intercalation in Iron Hexacyanoferrate: The Important Role of Ionic Radius. J. Phys. Chem., C 2013, 117, 21158-21165.
  28. Asakura, D., Okubo, M., Mizuno, Y., Kudo, T., Zhou, H., Ikedo, K., Mizokawa, T., Okazawa, A., Kojima, N., Fabrication of a Cyanide-Bridged Coordination Polymer Electrode for Enhanced Electrochemical Ion Storage Ability. J. Phys. Chem., C 2012, 116, 8364-8369.
  29. Wu, X., Deng, W., Qian, J., Cao, Y., Ai, X., Yang, H., Single-Crystal FeFe(CN) 6 Nanoparticles: A High Capacity and High Rate Cathode for Na-Ion Batteries. J. Mater. Chem., A 2013, 1, 10130-10134.
  30. You, Y., Wu, X.-L., Yin, Y.-X., Guo, Y.-G., High-Quality Prussian Blue Crystals as Superior Cathode Materials for Room-Temperature Sodium-Ion Batteries. Energy Environ. Sci., 2014, 7, 1643-1647.
  31. Wu, X., Wu, C., Wei, C., Hu, L., Qian, J., Cao, Y., Ai, X., Wang, J., Yang, H., Highly Crystallized Na 2 CoFe(CN) 6 with Suppressed Lattice Defects as Superior Cathode Material for Sodium-Ion Batteries. ACS Appl. Mater. Interfaces, 2016, 8, 5393-5399.
  32. Avila, M., Rodríguez-Hernández, J., Lemus-Santana, A. A., Reguera, E., Cation Mobility and Structural Changes on the Water Removal in Zeolite-Like Zinc Hexacyanometallates (II). J. Phys. Chem. Solids, 2011, 72, 988-993.
  33. Xue, L., Li, Y., Gao, H., Zhou, W., Lü, X., Kaveevivitchai, W., Manthiram, A., Goodenough, J. B., A Low-Cost High-Energy Potassium Cathode. J. Am. Chem. Soc., 2017, 139, 2164-2167.
  34. Bie, X., Kubota, K., Hosaka, T., Chihara, K., Komaba, S., A Novel K-Ion Battery: Hexacyanoferrate (II)/Graphite Cell. J. Mater. Chem., A 2017, 5, 4325-4330.
  35. Wu, X., Jian, Z., Li, Z., Ji, X., Prussian White Analogues as Promising Cathode for Non-Aqueous Potassium-Ion Batteries. Electrochem. Commun., 2017, 77, 54-57.
  36. He, G., Nazar, L. F., Crystallite Size Control of Prussian White Analogues for Non- Aqueous Potassium-Ion Batteries. ACS Energy Lett., 2017, 2, 1122-1127. Page 36 of 46
  37. Heo, W. J., Chae, S. M., Hyoung, J., Hong, T-S., Rhombohedral Potassium-Zinc Hexacyanoferrate as a Cathode Material for Non-aqueous Potassium-Ion Batteries. Inorg. Chem., 2019, 58, 3065-3072.
  38. Mizushima, K., Jones, P., Wiseman, P., Goodenough, J. B., Li x CoO 2 (0 < x < 1): A New Cathode Material for Batteries of High Energy Density. Mater. Res. Bull., 1980, 15, 783-789.
  39. Shaju, K. M., Bruce, P. G., Macroporous Li(Ni 1/ 3Co 1/3 Mn 1/3 )O 2 : A High-Power and High-Energy Cathode for Rechargeable Lithium Batteries. Adv. Mater., 2006, 18, 2330-2334.
  40. Taniguchi, H., Ebina, Y., Takada, K., Sasaki, T., Synthesis and Soft-Chemical Reactivity of Layered Potassium Cobalt Oxide. Solid State Ionics, 2005, 176, 2367-2370.
  41. Vaalma, C., Giffin, G. A., Buchholz, D., Passerini, S., Non-Aqueous K-Ion Battery Based on Layered K 0.3 MnO 2 and Hard Carbon/Carbon Black. J. Electrochem. Soc., 2016, 163, A1295-A1299.
  42. Wang, X., Xu, X., Niu, C., Meng, J., Huang, M., Liu, X., Liu, Z., Mai, L., Earth Abundant Fe/Mn-Based Layered Oxide Interconnected Nanowires for Advanced K- Ion Full Batteries. Nano Lett., 2017, 17, 544-550.
  43. Ortiz-Vitoriano, N., Drewett, N. E., Gonzalo, E., Rojo, T., High Performance Manganese-Based Layered Oxide Cathodes: Overcoming the Challenges of Sodium Ion Batteries. Energy Environ. Sci., 2017, 10, 1051-1074.
  44. Billaud, J., Clément, R. J., Armstrong, A. R., Canales-Vázquez, J., Bruce, P. G., β- NaMnO 2 : a High Performance Cathode for Sodium-Ion Batteries. J. Am. Chem. Soc., 2014, 136, 49, 17243-17248.
  45. Bruce, P. G., Armstrong, A. R., Gitzendanner, R. L., New Intercalation Compounds for Lithium Batteries: Layered LiMnO 2 . J. Mater. Chem., 1999, 9, 193-198. Page 37 of 46 ACS Paragon Plus Environment ACS Applied Energy Materials
  46. Ma, X.; Chen, H.; Ceder, G. Electrochemical Properties of Monoclinic NaMnO2. J. Electrochem. Soc., 2011, 158(12), A1307.
  47. Li, Z.-Y.; Rui, G.; Sun, L.; Hu, Z.; Liu, X. Designing an Advanced P2- Na 0.67 Mn 0.65 Ni 0.2 Co 0.15 O 2 Layered Cathode Material for Na-Ion Batteries. J. Mater. Chem. A, 2015, 3, 16272-16278.
  48. Li, Z. Y.; Rui, G.; Zhang, J.; Zhang, X.; Hu, Z.; Liu, X. New Insights into Designing High-Rate Performance Cathode Materials for Sodium Ion Batteries by Enlarging the Slab-Spacing of the Na-Ion Diffusion Layer. J. Mater. Chem. A, 2016, 4, 3453-3461.
  49. Zhang, Q.; Didier, C.; Pang, W. K.; Liu, Y.; Guo, Z. Structural Insight into Layer Gliding and Lattice Distortion in Layered Manganese Oxide Electrodes for Potassium-Ion Batteries. Advanced Energy Materials, 2019, 9, 1900568.
  50. Bai, P., Jiang, K., Zhang, X., Xu, J., Guo, S., Zhou. H., Ni-Doped Layered Manganese Oxide as a Stable Cathode for Potassium Ion Batteries ACS Appl. Mater. Interfaces 2020, 12, 9, 10490-10495.
  51. Masquelier, C., Croguennec, L., Polyanionic (Phosphates, Silicates, Sulfates) Frameworks as Electrode Materials for Rechargeable Li (or Na) Batteries. Chem. Rev., 2013, 113, 6552-6591.
  52. Barpanda, P., Liu, G., Ling, C. D., Tamaru, M., Avdeev, M., Chung, S.-C., Yamada, Y., Yamada, A., Na 2 FeP 2 O 7 : A Safe Cathode for Rechargeable Sodium-Ion Batteries. Chem. Mater., 2013, 25, 3480-3487.
  53. Recham, N., Rousse, G. l., Sougrati, M. T., Chotard, J.-N. l., Frayret, C., Mariyappan, S., Melot, B. C., Jumas, J.-C., Tarascon, J.-M., Preparation and Characterization of a Stable FeSO 4 F-Based Framework for Alkali Ion Insertion Electrodes. Chem. Mater., 2012, 24, 4363-4370.
  54. Ji, B., Yao, W., Zheng, Y., Kidkhunthod, P., Zhou, X., Tunmee, S., Sattayaporn, S., Cheng, H-M., He, H., Tang. Y., A fluoroxalate cathode material for potassium-ion batteries with ultra-long cyclability. Nat. Commun., 2020, 11, 1225. Page 38 of 46
  55. Han, J., Li, G.-N., Liu, F., Wang, M., Zhang, Y., Hu, L., Dai, C., Xu, M., Investigation of K 3 V 2 (PO 4 ) 3 /C Nanocomposites as High-Potential Cathode Materials for Potassium-Ion Batteries. Chem. Commun., 2017, 53, 1805-1808.
  56. Nikitina, V. A., Fedotov, S. S., Vassiliev, S. Y., Samarin, A. S., Khasanova, N. R., Antipov, E. V., Transport and Kinetic Aspects of Alkali Metal Ions Intercalation into AVPO 4 F Framework. J. Electrochem. Soc., 2017, 164, A6373-A6380.
  57. Liao, J., Hu, Q., He, X., Mu, J., Wang, J., Chen. C., A long lifespan potassium-ion full battery based on KVPO 4 F cathode and VPO 4 anode. Journal of Power Sources, 2020, 451, 227739.
  58. Han, J., Niu, Y., Bao, S.-J., Yu, Y.-N., Lu, S.-Y., Xu, M., Nanocubic KTi 2 (PO 4 ) 3 Electrodes for Potassium-Ion Batteries. Chem. Commun., 2016, 52, 11661-11664.
  59. Fedotov, S.S., Luchinin, N.D., Aksyonov, D.A., Morozov, V.A., Ryazantsev, V.S., Gaboardi, M., Plaisier, R.J., Stevenson, J.K., Abakumov, M.A., Antipov, V.E., Titanium-based potassium-ion battery positive electrode with extraordinarily high redox potential. Nat. Commun., 2020, 11, 1484.
  60. Fan, L., Ma, R., Wang, J., Yang, H., Lu, B., An Ultrafast and Highly Stable Potassium-Organic Battery. Adv. Mater. 2018, 30, 1805486.
  61. Tian, B., Zheng, J., Zhao, C., Liu, C., Su, C., Tang, W., Li, X., Ning, G.-H., Carbonyl Based Polyimide and Polyquinoneimide for Potassium-Ion Batteries. J. Mater. Chem. A 2019, 7, 9997-10003.
  62. Dresselhaus, M. S., Dresselhaus, G., Intercalation Compounds of Graphite. Adv. Phys., 2002, 51, 1-186.
  63. Wang, Z., Selbach, S. M., Grande, T., Van Der Waals Density Functional Study of the Energetics of Alkali Metal Intercalation in Graphite. RSC Adv., 2014, 4, 3973-3983. Page 39 of 46 ACS Paragon Plus Environment ACS Applied Energy Materials
  64. Mizutani, Y., Abe, T., Ikeda, K., Ihara, E., Asano, M., Harada, T., Inaba, M., Ogumi, Z., Graphite Intercalation Compounds Prepared in Solutions of Alkali Metals in 2- Methyltetrahydrofuran and 2, 5-Dimethyltetrahydrofuran. Carbon, 1997, 35, 61-65.
  65. Liu, D., Yang, Z., Li, W., Qiu, S., Luo, Y., Electrochemical Intercalation of Potassium into Graphite in KF Melt. Electrochim. Acta., 2010, 55, 1013-1018.
  66. Liu, Y., Fan, F., Wang, J., Liu, Y., Chen, H., Jungjohann, K. L., Xu, Y., Zhu, Y., Bigio, D., Zhu, T., Wang, C., In Situ Transmission Electron Microscopy Study of Electrochemical Sodiation and Potassiation of Carbon Nanofibers. Nano Lett., 2014, 14, 3445-3452.
  67. Jian, Z., Luo, W., Ji, X., Carbon Electrodes for K-Ion Batteries. J. Am. Chem., Soc. 2015, 137, 11566-11569.
  68. Xing, Z., Qi, Y., Jian, Z., Ji, X., Polynanocrystalline Graphite: A New Carbon Anode with Superior Cycling Performance for K-Ion Batteries. ACS Appl. Mater. Interfaces, 2017, 9, 4343-4351.
  69. Bin De-S., Lin Xi-J., Sun Y-G., Xu Y-S., Zhang K, Cao A-M., Wan L-J., Engineering Hollow Carbon Architecture for High-Performance K-Ion Battery Anode. J. Am. Chem. Soc., 2018, 140, 7127-7134.
  70. Xu, Y., Yuan, T., Zhao, Y., Yao, H., Yang, J., Zheng, S., Constructing Multichannel Carbon Fibers as Freestanding Anodes for Potassium-Ion Battery with High Capacity and Long Cycle Life. Adv. Mater. Interfaces, 2020, 7, 1901829.
  71. Zhao, J., Zou, X., Zhu, Y., Xu, Y., Wang, C., Electrochemical Intercalation of Potassium into Graphite. Adv. Funct.Mater., 2016, 26, 8103-8110.
  72. Hosaka, T., Kubota, K., Hameed, S.A., Komaba, S., Research Development on K-Ion Batteries. Chem. Rev., DOI: 10.1021/acs.chemrev.9b00463.
  73. Jian, Z. L., Hwang, S., Li, Z. F., Hernandez, A. S., Wang, X. F., Xing, Z. Y., Su, D., Ji, X. L., Hard-Soft Composite Carbon as a Long Cycling and High-Rate Anode for Potassium-Ion Batteries. Adv. Funct. Mater., 2017, 27, 1700324. Page 40 of 46
  74. Wang, W.; Zhou, J. H.; Wang, Z. P.; Zhao, L. Y.; Li, P. H.; Yang, Y.; Yang, C.; Huang, H. X.; Guo, S. J., Short-Range Order in Mesoporous Carbon Boosts Potassium-Ion Battery Performance. Adv. Energy Mater., 2018, 8, 1701648.
  75. Share, K., Cohn, A.P., Carter, R., Rogers, B., Pint, C. L., Role of Nitrogen-Doped Graphene for Improved High-Capacity Potassium Ion Battery Anodes. ACS Nano, 2016, 10, 9738-9744.
  76. Obrovac, M. N., Chevrier, V. L., Alloy Negative Electrodes for Li-Ion Batteries. Chem. Rev,. 2014, 114, 11444-11502.
  77. Sultana, I., Rahman, M. M., Chen, Y., Glushenkov, A. M., Potassium-Ion Battery Anode Materials Operating through the Alloying-Dealloying Reaction Mechanism. Adv. Funct. Mater., 2018, 28, 1703857.
  78. McCulloch, W., Ren, X., Yu, M., Huang, Z., Wu, Y., Potassium-Ion Oxygen Battery Based on a High Capacity Antimony Anode. ACS Appl. Mater. Interfaces, 2015, 7, 26158-26166.
  79. Sultana, I., Ramireddy, T., Rahman, M., Chen, Y., Glushenkov, A., Tin-based composite anodes for potassium-ion batteries. Chem. Commun., 2016, 52, 9279- 9282.
  80. Wang, Q., Zhao, X., Ni, C., Tian, H., Li, J., Zhang, Z., Mao, S. X., Wang, J., Xu,Y., Reaction and Capacity-Fading Mechanisms of Tin Nanoparticles in Potassium-Ion Batteries. J. Phys. Chem. C., 2017, 121, 12652-12657.
  81. Zhang, W., Mao, J., Li, S., Chen, Z., Guo, Z., Phosphorus-based alloy materials for advanced potassium-ion battery anode. J. Am. Chem. Soc., 2017, 139, 3316-3319.
  82. Shimizu, M., Yatsuzuka, R., Koya, T., Yamakami, T., Arai, S., Tin Oxides as a Negative Electrode Material for Potassium-Ion Batteries. ACS Appl. Energy Mater., 2018, 1, 6865-6870.
  83. Schon, T. B., McAllister, B. T., Li, P., Seferos, D. S., The rise of organic electrode materials for energy storage. Chem.Soc. Rev., 2016, 45, 6345-6404.
  84. Muench, S., Wild, A., Friebe, C., Haupler, B., Janoschka, T.,Schubert, U. S., Polymer-Based Organic Batteries. Chem. Rev., 2016, 116, 9438-9484.
  85. Deng, Q., Pei, J., Fan, C., Ma, J., Cao, B., Li, C., Jin, Y., Wang, L.,Li, J., Potassium salts of para-aromatic dicarboxylates as the highly efficient organic anodes for low- cost K-ion batteries. Nano Energy, 2017, 33, 350-355.
  86. Lei, K., Li, F., Mu, C., Wang, J., Zhao, Q., Chen, C., Chen, J., High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes. Energy Environ. Sci., 2017, 10, 552-556.
  87. Armand, M., Grugeon, S., Vezin, H., Laruelle, S., Ribiere, P.,Poizot, P., J. M. Tarascon, J. M., Conjugated dicarboxylate anodes for Li-ion batteries. Nat. Mater., 2009, 8, 120-125.
  88. Banda, H., Damien, D., Nagarajan, K., Hariharan, M., Shaijumon, M. M., A polyimide based all-organic sodium ion battery. J. Mater. Chem. A, 2015, 3, 10453- 10458.
  89. Dong, Y., Wu, Z., Zheng, S., Wang, X., Qin, J., Wang, S., Shi, X.,Bao, X., Ti 3 C 2 MXene Derived Sodium/Potassium Titanate Nanoribbons for High-Performance Sodium/Potassium Ion Batteries with Enhanced Capacities. ACS Nano, 2017, 11, 4792-4800.
  90. Ren, X., Zhao, Q., McCulloch, W. D., Wu, Y., MoS 2 as a long-life host material for potassium ion intercalation. Nano Res., 2017, 10, 1313-1321.
  91. Lakshmi, V., Chen, Y., Mikhaylov, A. A., Medvedev, A. G., Sultana, I., Rahman, M. M., Lev, O., Prikhodchenko, P. V., Glushenkov, A. M., Nanocrystalline SnS 2 coated onto reduced graphene oxide: demonstrating the feasibility of a non-graphitic anode with sulfide chemistry for potassium-ion batteries. Chem. Commun., 2017, 53, 8272- 8275. Page 42 of 46
  92. Hu, Z., Zhou, C., Prabhakar, R., Lim, S., Wang, Y., Kan, J., Cheng, H., Mhaisalkar, S., Sow, C., Rapid reversible electromigration of intercalated K ions within individual MoO 3 nanobundle. J. Appl. Phys., 2013, 113, 024311.
  93. Schuppert, N., Mukherjee, S., Bates, A., Son, E., Choi, M., Park, S., High rate and stable symmetric potassium ion batteries fabricated with flexible electrodes and solid- state electrolytes. J. Power Sources, 2016, 316, 160-169.
  94. Sultana, I., Rahman, M. M., Mateti, S., Ahmadabadi, V. G., Glushenkov, A. M., Chen, Y., K-ion and Na-ion storage performances of Co 3 O 4 -Fe 2 O 3 nanoparticle- decorated super P carbon black prepared by a ball milling process. Nanoscale, 2017, 9, 3646-3654.
  95. Han, J., Xu, M., Niu, Y., Li, G., Wang, M., Zhang, Y., Ji, M., Li, C., Exploration of K 2 Ti 8 O 17 as an anode material for potassium-ion batteries. Chem. Commun., 2016, 52, 11274-11276.
  96. Pa, D., Abdi, S., Shukla, M., Structural and EPR studies of Lithium inserted layered Potassium tetra titanate K 2 Ti 4 O 9 as material for K ions battery. J. Mater. Sci. Mater. Electron., 2015, 26, 6647-6652.
  97. Kishore, B., Venkatesh, G., Munichandraiah, N., K 2 Ti 4 O 9 : A Promising Anode Material for Potassium Ion Batteries. J. Electrochem. Soc., 2016, 163, A2551-A2554.
  98. Han, J., Niu, Y., Bao, S., Yu, Y., Lu, S., Xu, M., Nanocubic KTi 2 (PO 4 ) 3 electrodes for potassium-ion batteries. Chem. Commun., 2016, 52, 11661-11664.
  99. Luo, W., Wan, J., Ozdemir, B., Bao, W., Chen, Y., Dai, J., Lin, H., Xu, Y., Gu, F., Barone, V., Hu, L., Potassium Ion Batteries with Graphitic Materials. Nano Lett., 2015, 15, 7671-7677.
  100. Wessells, C. D., Peddada, S. V., Huggins, R. A., Cui, Y., Nickel Hexacyanoferrate Nanoparticle Electrodes for Aqueous Sodium and Potassium Ion Batteries. Nano Lett., 2011, 11, 5421-5425.
  101. Page 43 of 46 ACS Paragon Plus Environment ACS Applied Energy Materials
  102. Padigi, P., Thiebes, J., Swan, M., Goncher, G., Evans, D., Solanki, R., Prussian Green: a High Rate Capacity Cathode for Potassium Ion Batteries. Electrochim. Acta., 2015, 166, 32-39.
  103. Wessells, C. D., Huggins, R. A., Cui, Y., Copper Hexacyanoferrate Battery Electrodes with Long Cycle Life and High Power. Nat. Commun., 2011, 2, 550-554.
  104. Wessells, C. D., Peddada, S. V., McDowell, M. T., Huggins, R. A., Cui, Y., The Effect of Insertion Species on Nanostructured Open Framework Hexacyanoferrate Battery Electrodes. J. Electrochem. Soc., 2012, 159, A98-A103.
  105. Cho, E., Mun, J., Chae, O. B., Kwon, O. M., Kim, H.-T., Ryu, J. H., Kim, Y. G., Oh, S. M., Corrosion/Passivation of Aluminum Current Collector in Bis (Fluorosulfonyl) Imide Based Ionic Liquid for Lithium-Ion Batteries. Electrochem. Commun., 2012, 22, 1-3.
  106. Liao, J.; Hu, Q.; Yu, Y.; Wang, H.; Tang, Z.; Wen, Z.; Chen, C. A Potassium- Rich Iron Hexacyanoferrate/Dipotassium Terephthalate@Carbon Nanotube Composite Used for K-Ion Full-Cells with an Optimized Electrolyte. J. Mater. Chem. A 2017, 5, 19017-19024.
  107. Komaba, S., Ishikawa, T., Yabuuchi, N., Murata, W., Ito, A., Ohsawa, Y., Fluorinated Ethylene Carbonate as Electrolyte Additive for Rechargeable Na Batteries. ACS Appl. Mater. Interfaces, 2011, 3, 4165-4168.
  108. Dugas, R., Ponrouch, A., Gachot, G., David, R., Palacín, M. R., Tarascon, J.-M., Na Reactivity toward Carbonate-Based Electrolytes: The Effect of FEC as Additive. J. Electrochem. Soc., 2016, 163, A2333-A2339.
  109. Liu, S., Mao, J., Zhang, Q., Wang, Z., Pang, W. K., Zhang, L., Du, A., Sencadas, V., Zhang, W., Guo, Z., An Intrinsically Non-flammable Electrolyte for High-Performance Potassium Batteries. Angew. Chem. Int. Ed., 2020, 59, 3638. Page 44 of 46
  110. Salini, P.S., Gopinadh, S.V., Kalpakasseri, A., John, B., Devassy, T. M., Toward Greener and Sustainable Li-Ion Cells: An Overview of Aqueous-Based Binder Systems. ACS Sustainable Chem. Eng., 2020, 8, 10, 4003-4025.
  111. John, B., Cheruvally, G., Polymeric materials for lithium-ion cells. Polymers for Advanced Technologies., 2017, 28, 1528-1538.
  112. Li, J., Zhuang, N., Xie, J., Zhu, Y., Lai, H., Qin, W., Javed, M. S., Xie, W., Mai, W., Carboxymethyl Cellulose Binder Greatly Stabilizes Porous Hollow Carbon Sub- microspheres in Capacitive K-Ion Storage. ACS Appl. Mater. Interfaces, 2019, 11, 15581-15590.
  113. Sultana, I., Rahman, M. M., Liu, J., Sharma, N., Ellis, A. V., Chen, Y., Glushenkov, A. M., Antimony-Carbon Nanocomposites for Potassium-Ion Batteries: Insight into the Failure Mechanism in Electrodes and Possible Avenues to Improve Cyclic Stability. J. Power Sources 2019, 413, 476-484.
  114. Page 45 of 46 ACS Paragon Plus Environment ACS Applied Energy Materials