Academia.eduAcademia.edu

Outline

Microbial trait-based approaches for agroecosystems

2022, Advances in Agronomy

https://doi.org/10.1016/BS.AGRON.2022.04.002

Abstract

Conventional agricultural practices negatively impact soil biodiversity, carbon stocks, and greenhouse gas emissions in ways that make them unsustainable for supporting future supply of food and fiber. Better management of agrobiodiversity will likely play a critical role in transitioning toward more sustainable practices. In particular, innovation and developments targeting the aboveground and belowground components of agroecosystems should be informed by frameworks and approaches that harness the-in particular functional-diversity of complex microbial communities. Here, we review and discuss microbial trait-based approaches that will help us understand and steer agroecosystem functioning in the face of global change. We highlight how trait-based approaches can improve agricultural practices related to soil functioning (e.g., soil fertility and aggregation); climate regulation (e.g., carbon storage and greenhouse gas emissions) and adaptation to climate change; plant health; and reduction of contaminant-related hazards for human health. We also consider how microbial trait-based approaches can be used as a tool to improve cultivated plant performance through artificial selection and microbiome engineering. Last, we discuss the inherent obstacles associated with the development and implementation of trait-based approaches owing to strong interactions within microbial communities and linkages between plants and the soil environment. Despite these obstacles, microbial trait-based approaches hold promise for the sustainable management of agricultural ecosystems needed to feed and nourish a rapidly growing human population.

References (223)

  1. Abalos, D., van Groenigen, J.W., Philippot, L., Lubbers, I.M., De Deyn, G.B., 2019. Plant trait-based approaches to improve nitrogen cycling in agroecosystems. J. Appl. Ecol. 56, 2454-2466.
  2. Aguilar-Trigueros, C.A., Hempel, S., Powell, J.R., Anderson, I.C., Antonovics, J., Bergmann, J., Cavagnaro, T.R., Chen, B., Hart, M.M., Klironomos, J., Petermann, J.S., Verbruggen, E., Veresoglou, S.D., Rillig, M.C., 2015. Branching out: towards a trait-based understanding of fungal ecology. Fungal Biol. Rev. 29, 34-41.
  3. Allison, S.D., Gessner, M., 2012. A trait-based approach for modelling microbial litter decomposition. Ecol. Lett. 15, 1058-1070.
  4. Allison, S.D., Wallenstein, M.D., Bradford, M.A., 2010. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336-340.
  5. Alonso, C., Ramos-Cruz, D., Becker, C., 2019. The role of plant epigenetics in biotic interactions. New Phytol. 221, 731-737.
  6. Alvarez, C.R., Alvarez, R., Grigera, S., Lavado, R.S., 1998. Associations between organic matter fractions and the active soil microbial biomass. Soil Biol. Biochem. 30, 767-773.
  7. Angle, J.C., Morin, T.H., Solden, L.M., Narrowe, A.B., Smith, G.J., Borton, M.A., Rey-Sanchez, C., Daly, R.A., Mirfenderesgi, G., Hoyt, D.W., Riley, W.J., Miller, C.S., Bohrer, G., Wrighton, K.C., 2017. Methanogenesis in oxygenated soils is a substantial fraction of wetland methane emissions. Nat. Commun. 8, 1567. Aug e, R.M., Toler, H.D., Saxton, A.M., 2015. Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza 25, 13-24.
  8. Averill, C., Turner, B.L., Finzi, A.C., 2014. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505, 543-545.
  9. Averill, C., Bhatnagar, J.M., Dietze, M.C., Pearse, W.D., Kivlin, S.N., 2019. Global imprint of mycorrhizal fungi on whole-plant nutrient economics. Proc. Natl. Acad. Sci. U. S. A. 116, 23163-23168.
  10. Backer, R., Rokem, J.S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E., Subramanian, S., Smith, D.L., 2018. Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front. Plant Sci. 9 (9), 1473.
  11. Bailey, V., Smith, J.L., Bolton, H., 2002. Bailey VL, Smith JL, Bolton H Jr. Fungal-to- bacterial ratios in soils investigated for enhanced C sequestration. Soil Bio Biochem 34: 997-1007. Soil Biol. Biochem. 34, 997-1007.
  12. Banerjee, S., Walder, F., B€ uchi, L., Meyer, M., Held, A.Y., Gattinger, A., Keller, T., Charles, R., van der Heijden, M.G.A., 2019. Agricultural intensification reduces micro- bial network complexity and the abundance of keystone taxa in roots. ISME J. 13, 1722-1736.
  13. Barcelo ´, M., van Bodegom, P.M., Soudzilovskaia, N.A., 2019. Climate drives the spatial distribution of mycorrhizal host plants in terrestrial ecosystems. J. Ecol. 107, 2564-2573.
  14. Bardgett, R.D., van der Putten, W.H., 2014. Belowground biodiversity and ecosystem functioning. Nature 515, 505-511.
  15. Bardon, C., Poly, F., Haichar, F.E.Z., Roux, X., Simon, L., Meiffren, G., Comte, G., Rouifed, S., Florence, P., 2017. Biological denitrification inhibition (BDI) with procyanidins induces modification of root traits, growth and N status in Fallopia x bohemica. Soil Biol. Biochem. 107, 41-49.
  16. Bardon, C., Misery, B., Florence, P., Poly, F., Roux, X., 2018. Control of soil N cycle processes by Pteridium aquilinum and Erica cinerea in heathlands along a pH gradient. Ecosphere 9, e02426.
  17. Barot, S., Allard, V., Cantarel, A., Enjalbert, J., Gauffreteau, A., Goldringer, I., Lata, J.-C., Le Roux, X., Niboyet, A., Porcher, E., 2017. Designing mixtures of varieties for multifunctional agriculture with the help of ecology. A review. Agron. Sustain. Dev. 37, 13.
  18. Bell, L., Sparling, B., Tenuta, M., Entz, M., 2013. Soil profile carbon and nutrient stocks under long-term conventional and organic crop and alfalfa-crop rotations and re-established grassland. Agric. Ecosyst. Environ. 158, 156-163.
  19. Bender, S.F., Wagg, C., van der Heijden, M.G.A., 2016. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 31, 440-452.
  20. Berlemont, R., Martiny, A.C., 2013. Phylogenetic distribution of potential cellulases in bacteria. Appl. Environ. Microbiol. 79, 1545-1554.
  21. Bierne, H., Hamon, M., Cossart, P., 2012. Epigenetics and bacterial infections. Cold Spring Harb. Perspect. Med. 2, a010272.
  22. Blagodatskaya, E., Kuzyakov, Y., 2013. Active microorganisms in soil: critical review of estimation criteria and approaches. Soil Biol. Biochem. 67, 192-211.
  23. Bodelier, P.L.E., Steenbergh, A.K., 2014. Interactions between methane and the nitrogen cycle in light of climate change. Curr. Opin. Environ. Sustain. 9-10, 26-36.
  24. Bodelier, P.L.E., P erez, G., Veraart, A.J., Krause, S.M.B., 2019. Methanotroph ecology, envi- ronmental distribution and functioning. In: Lee, E.Y. (Ed.), Methanotrophs: Microbiology Fundamentals and Biotechnological Applications. Springer International Publishing, Chambridge, pp. 1-38.
  25. Bonfante, P., Genre, A., 2010. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat. Commun. 1, 48.
  26. Brbi c, M., Pis ˇkorec, M., Vidulin, V., Kris ˇko, A., S ˇmuc, T., Supek, F., 2016. The landscape of microbial phenotypic traits and associated genes. Nucleic Acids Res. 44, 10074-10090.
  27. Brunetti, I., Tidball, M., Couvet, D., 2019. Relationship between biodiversity and agricul- tural production. Nat. Resour. Model. 32, e12204.
  28. Brzostek, E.R., Fisher, J.B., Phillips, R.P., 2014. Modeling the carbon cost of plant nitrogen acquisition: mycorrhizal trade-offs and multipath resistance uptake improve predictions of retranslocation. J. Geophys. Res. Biogeosci. 119, 1684-1697.
  29. Bugg, T.D.H., Ahmad, M., Hardiman, E.M., Rahmanpour, R., 2011. Pathways degra- dation of lignin in bacteria and fungi. Nat. Prod. Rep. 28, 1883-1896.
  30. Bulgarelli, D., Garrido-Oter, R., M€ unch, P., Weiman, A., Dr€ oge, J., Pan, Y., McHardy, A., Schulze-Lefert, P., 2015. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17, 392-403.
  31. Cadotte, M.W., Carscadden, K., Mirotchnick, N., 2011. Beyond species: functional diver- sity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079-1087.
  32. Cantarel, A.A.M., Allard, V., Andrieu, B., Barot, S., Enjalbert, J., Gervaix, J., Goldringer, I., Pommier, T., Saint-Jean, S., Le Roux, X., 2021. Plant functional trait variability and trait syndromes among wheat varieties: the footprint of artificial selection. J. Exp. Bot. 72, 1166-1180.
  33. Carrio ´n, V.J., Perez-Jaramillo, J., Cordovez, V., Tracanna, V., de Hollander, M., Ruiz-Buck, D., Mendes, L.W., van Ijcken, W.F.J., Gomez-Exposito, R., Elsayed, S.S., Mohanraju, P., Arifah, A., van der Oost, J., Paulson, J.N., Mendes, R., van Wezel, G.P., Medema, M.H., Raaijmakers, J.M., 2019. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science 366, 606-612.
  34. Casadesu ´s, J., Low, D., 2006. Epigenetic gene regulation in the bacterial world. Microbiol. Mol. Biol. Rev. 70, 830-856.
  35. Chenu, C., 1995. Extracellular polysaccharides: an interface between microorganisms and soil constituents. In: Huang, P.M. (Ed.), Environmental Impacts of Soil Component Interactions: Land Quality, Natural and Anthropogenic Organics. vol. I. CRC Press, Boca Raton, pp. 217-233.
  36. Compant, S., Samad, A., Faist, H., Sessitsch, A., 2019. A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. J. Adv. Res. 19, 29-37.
  37. Cooke, R.S.C., Bates, A.E., Eigenbrod, F., 2019. Global trade-offs of functional redundancy and functional dispersion for birds and mammals. Glob. Ecol. Biogeogr. 28, 484-495.
  38. Cordovez, V., Schop, S., Hordijk, K., Dupr e de Boulois, H., Coppens, F., Hanssen, I., Raaijmakers, J.M., Carrio ´n, V.J., 2018. Priming of plant growth promotion by volatiles of root-associated Microbacterium spp. Appl. Environ. Microbiol. 84, e01865-18.
  39. Cordovez, V., Dini-Andreote, F., Carrio ´n, V.J., Raaijmakers, J.M., 2019. Ecology and evolution of plant microbiomes. Annu. Rev. Microbiol. 73, 69-88.
  40. Costa, O.Y.A., Raaijmakers, J.M., Kuramae, E.E., 2018. Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front. Microbiol. 9, 1636.
  41. Daebeler, A., Bodelier, P., Zheng, Y., Hefting, M., Jia, Z., Laanbroek, H., 2014. Interactions between Thaumarchaea, Nitrospira and methanotrophs modulate autotrophic nitrifica- tion in volcanic grassland soil. ISME J. 8, 2397-2410.
  42. Dainese, M., Martin, E.A., Aizen, M.A., Albrecht, M., Bartomeus, I., Bommarco, R., Carvalheiro, L.G., Chaplin-Kramer, R., Gagic, V., Garibaldi, L.A., Ghazoul, J., Grab, H., Jonsson, M., Karp, D.S., Kennedy, C.M., Kleijn, D., Kremen, C., Landis, D.A., Letourneau, D.K., Marini, L., Poveda, K., Rader, R., Smith, H.G., Tscharntke, T., Andersson, G.K.S., Badenhausser, I., Baensch, S., Bezerra, A.D.M., Bianchi, F.J.J.A., Boreux, V., Bretagnolle, V., Caballero-Lopez, B., Cavigliasso, P., Cetkovi c, A., Chacoff, N.P., Classen, A., Cusser, S., da Silva e Silva, F.D., de Groot, G.A., Dudenh€ offer, J.H., Ekroos, J., Fijen, T., Franck, P., Freitas, B.M., Garratt, M.P.D., Gratton, C., Hipo ´lito, J., Holzschuh, A., L., Iverson, A.L., Jha, S., Keasar, T., Kim, T.N., Kishinevsky, M., Klatt, B.K., Klein, A.-M., Krewenka, K.M., Krishnan, S., Larsen, A.E., Lavigne, C., Liere, H., Maas, B., Mallinger, R.E., Martinez Pachon, E., Martı ´nez-Salinas, A., Meehan, T.D., Mitchell, M.G.E., Molina, G.A.R., Nesper, M., Nilsson, L., Rourke, M.E., Peters, M.K., Ple cas ˇ, M., Potts, S.G., Ramos, D.D.L., Rosenheim, J.A., Rundl€ of, M., Rusch, A., Sa ´ez, A., Scheper, J., Schleuning, M., Schmack, J.M., Sciligo, A.R., Seymour, C., Stanley, D.A., Stewart, R., Stout, J.C., Sutter, L., Takada, M.B., Taki, H., Tamburini, G., Tschumi, M., Viana, B.F., Westphal, C., Willcox, B.K., Wratten, S.D., Yoshioka, A., Zaragoza-Trello, C., Zhang, W., Zou, Y., et al., 2019. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, eaax0121.
  43. De Bie, T., De Meester, L., Brendonck, L., Martens, K., Goddeeris, B., Ercken, D., Hampel, H., Denys, L., Vanhecke, L., Van der Gucht, K., Van Wichelen, J., Vyverman, W., Declerck, S.A.J., 2012. Body size and dispersal mode as key traits deter- mining metacommunity structure of aquatic organisms. Ecol. Lett. 15, 740-747.
  44. de Souza, R.S.C., Armanhi, J.S.L., Arruda, P., 2020. From microbiome to traits: designing synthetic microbial communities for improved crop resiliency. Front. Plant Sci. 11, 1179.
  45. de Vrieze, J., 2015. The littlest farmhands. Science 349, 680-683.
  46. Dean, J.F., Middelburg, J.J., R€ ockmann, T., Aerts, R., Blauw, L.G., Egger, M., Jetten, M.S.M., de Jong, A.E.E., Meisel, O.H., Rasigraf, O., Slomp, C.P., in't Zandt, M.H., Dolman, A.J., 2018. Methane feedbacks to the global climate system in a warmer world. Rev. Geophys. 56, 207-250.
  47. Dı ´az, S., Lavorel, S., de Bello, F., Qu etier, F., Grigulis, K., Robson, T.M., 2007. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl. Acad. Sci. U. S. A. 104, 20684-20689.
  48. Dobzhansky, T., 1950. Heredity, environment, and evolution. Science 111, 161-166.
  49. Dornbush, M.E., von Haden, A.C., 2017. Chapter 8-Intensified agroecosystems and their effects on soil biodiversity and soil functions. In: Al-Kaisi, M.M., Lowery, B. (Eds.), Soil Health and Intensification of Agroecosytems. Academic Press, Watham, pp. 173-193.
  50. Duc, N.H., Csintalan, Z., Posta, K., 2018. Arbuscular mycorrhizal fungi mitigate negative effects of combined drought and heat stress on tomato plants. Plant Physiol. Biochem. 132, 297-307.
  51. Duca, D., Lorv, J., Patten, C.L., Rose, D., Glick, B.R., 2014. Indole-3-acetic acid in plant-microbe interactions. Antonie Van Leeuwenhoek 106, 85-125.
  52. Dutta, A., Hartmann, F.E., Francisco, C.S., McDonald, B.A., Croll, D., 2021. Mapping the adaptive landscape of a major agricultural pathogen reveals evolutionary constraints across heterogeneous environments. ISME J. 15, 1402-1419.
  53. Ebrahimi, A., Or, D., 2017. Mechanistic modeling of microbial interactions at pore to profile scale resolve methane emission dynamics from permafrost soil. J. Geophys. Res. Biogeosci. 122, 1216-1238.
  54. Edwards, J., Johnson, C., Santos-Medellı ´n, C., Lurie, E., Podishetty, N.K., Bhatnagar, S., Eisen, J.A., Sundaresan, V., 2015. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl. Acad. Sci. U. S. A. 112, E911-E920.
  55. Escalas, A., Hale, L., Voordeckers, J.W., Yang, Y., Firestone, M.K., Alvarez-Cohen, L., Zhou, J., 2019. Microbial functional diversity: from concepts to applications. Ecol. Evol. 9, 12000-12016.
  56. Evans, P.N., Parks, D.H., Chadwick, G.L., Robbins, S.J., Orphan, V.J., Golding, S.D., Tyson, G.W., 2015. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350, 434-438.
  57. Evans, P., Boyd, J., Leu, A., Woodcroft, B., Parks, D., Philip, H., Tyson, G., 2019. An evolving view of methane metabolism in the Archaea. Nat. Rev. Microbiol. 17, 219-232.
  58. FAOSTAT, 2021. Food and Agricultural Data. http://www.fao.org/faostat/en/#search/ cite. Accessed June 17, 2021.
  59. Farhan Ul Haque, M., Xu, H.J., Murrell, J.C., Crombie, A., 2020. Facultative methanotrophs-diversity, genetics, molecular ecology and biotechnological potential: a mini-review. Microbiology (Reading) 166, 894-908.
  60. Fernandez, C.W., Kennedy, P.G., 2015. Moving beyond the black-box: fungal traits, community structure, and carbon sequestration in forest soils. New Phytol. 205, 1378-1380.
  61. Fernandez, C.W., Kennedy, P.G., 2018. Melanization of mycorrhizal fungal necromass structures microbial decomposer communities. J. Ecol. 106, 468-479.
  62. Fierer, N., 2017. Embracing the unknown: disentangling the complexities of the soil micro- biome. Nat. Rev. Microbiol. 15, 579-590.
  63. Fierer, N., Bradford, M.A., Jackson, R.B., 2007. Toward an ecological classification of soil bacteria. Ecology 88, 1354-1364.
  64. Finkel, O.M., Castrillo, G., Herrera Paredes, S., Salas Gonza ´lez, I., Dangl, J.L., 2017. Understanding and exploiting plant beneficial microbes. Curr. Opin. Plant Biol. 38, 155-163.
  65. Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, F.S., Coe, M.T., Daily, G.C., Gibbs, H.K., Helkowski, J.H., Holloway, T., Howard, E.A., Kucharik, C.J., Monfreda, C., Patz, J.A., Prentice, I.C., Ramankutty, N., Snyder, P.K., 2005. Global consequences of land use. Science 309, 570-574.
  66. Fry, E.L., De Long, J.R., A ´lvarez Garrido, L., Alvarez, N., Carrillo, Y., Castan ˜eda-Go ´mez, L., Chomel, M., Dondini, M., Drake, J.E., Hasegawa, S., Hortal, S., Jackson, B.G., Jiang, M., Lavallee, J.M., Medlyn, B.E., Rhymes, J., Singh, B.K., Smith, P., Anderson, I.C., Bardgett, R.D., Baggs, E.M., Johnson, D., 2019. Using plant, microbe, and soil fauna traits to improve the predictive power of biogeochemical models. Methods Ecol. Evol. 10, 146-157.
  67. Fussmann, G.F., Loreau, M., Abrams, P.A., 2007. Eco-evolutionary dynamics of commu- nities and ecosystems. Funct. Ecol. 21, 465-477.
  68. Galland, W., Florence, P., Burlet, A., Mathieu, C., Nardy, M., Poussineau, S., Blaze `re, L., Gervaix, J., Puijalon, S., Simon, L., Haichar, F.E.Z., 2019. Biological denitrification inhibition (BDI) in the field: a strategy to improve plant nutrition and growth. Soil Biol. Biochem. 136, 107513.
  69. Garnica, S., Rosenstein, R., Sch€ on, M.E., 2020. Belowground fungal community diversity, composition and ecological functionality associated with winter wheat in conventional and organic agricultural systems. PeerJ 8, e9732.
  70. Geyer, K., Dijkstra, P., Sinsabaugh, R., Frey, S., 2018. Clarifying the interpretation of carbon use efficiency in soil through methods comparison. Soil Biol. Biochem. 128, 79-88.
  71. Gogarten, J.P., Doolittle, W.F., Lawrence, J.G., 2002. Prokaryotic evolution in light of gene transfer. Mol. Biol. Evol. 19, 2226-2238.
  72. Gopal, M., Gupta, A., 2016. Microbiome selection could spur next-generation plant breed- ing strategies. Front. Microbiol. 7 (7), 1971.
  73. Govaert, L., Fronhofer, E.A., Lion, S., Eizaguirre, C., Bonte, D., Egas, M., Hendry, A.P., De Brito Martins, A., Melia ´n, C.J., Raeymaekers, J.A.M., Ratikainen, I.I., Saether, B.-E., Schweitzer, J.A., Matthews, B., 2018. Eco-evolutionary feedbacks-theoretical models and perspectives. Funct. Ecol. 33, 13-30.
  74. Green, J.L., Bohannan, B.J.M., Whitaker, R.J., 2008. Microbial biogeography: from taxon- omy to traits. Science 320, 1039-1043.
  75. Grime, J.P., 1974. Vegetation classification by reference to strategies. Nature 250, 26-31.
  76. Guerrero-Cruz, S., Cremers, G., van Alen, T.A., Op den Camp, H.J.M., Jetten, M.S.M., Rasigraf, O., Vaksmaa, A., 2018. Response of the anaerobic methanotroph "Candidatus methanoperedens nitroreducens" to oxygen stress. Appl. Environ. Microbiol. 84, e01832-18.
  77. Guo, L.B., Gifford, R.M., 2002. Soil carbon stocks and land use change: a meta analysis. Glob. Chang. Biol. 8, 345-360.
  78. Harbort, C.J., Hashimoto, M., Inoue, H., Niu, Y., Guan, R., Rombola `, A.D., Kopriva, S., Voges, M.J.E.E.E., Sattely, E.S., Garrido-Oter, R., Schulze-Lefert, P., 2020.
  79. Root-secreted coumarins and the microbiota interact to improve iron nutrition in Arabidopsis. Cell Host Microbe 28, 825-837.e6.
  80. Hassani, M.A., Dura ´n, P., Hacquard, S., 2018. Microbial interactions within the plant holobiont. Microbiome 6, 58.
  81. Herrel, A., Joly, D., Danchin, E., 2020. Epigenetics in ecology and evolution. Funct. Ecol. 34, 381-384.
  82. Hester, E.R., Jetten, M.S.M., Welte, C.U., L€ ucker, S., 2019. Metabolic overlap in environ- mentally diverse microbial communities. Front. Genet. 10 (10), 989.
  83. Ho, A., Kerckhof, F.-M., Luke, C., Reim, A., Krause, S., Boon, N., Bodelier, P.L.E., 2013. Conceptualizing functional traits and ecological characteristics of methane-oxidizing bacteria as life strategies. Environ. Microbiol. Rep. 5, 335-345.
  84. Hou, D., O'Connor, D., Igalavithana, A.D., Alessi, D.S., Luo, J., Tsang, D.C.W., Sparks, D.L., Yamauchi, Y., Rinklebe, J., Ok, Y.S., 2020. Metal contamination and bio- remediation of agricultural soils for food safety and sustainability. Nat. Rev. Earth Environ. 1, 366-381.
  85. Jeon, J.-S., Carreno-Quintero, N., van Eekelen, H.D.L.M., De Vos, R.C.H., Raaijmakers, J.M., Etalo, D.W., 2021. Impact of root-associated strains of three Paraburkholderia species on primary and secondary metabolism of Brassica oleracea. Sci. Rep. 11, 2781.
  86. Jochum, M.D., McWilliams, K.L., Borrego, E.J., Kolomiets, M.V., Niu, G., Pierson, E.A., Jo, Y.K., 2019. Bioprospecting plant growth-promoting rhizobacteria that mitigate drought stress in grasses. Front. Microbiol. 10 (10), 2106.
  87. Johansson, J.F., Paul, L.R., Finlay, R.D., 2004. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol. Ecol. 48, 1-13.
  88. Jones, C.M., Spor, A., Brennan, F.P., Breuil, M.-C., Bru, D., Lemanceau, P., Griffiths, B., Hallin, S., Philippot, L., 2014. Recently identified microbial guild mediates soil N 2 O sink capacity. Nat. Clim. Chang. 4, 801-805.
  89. Kalia, V.C., Raju, S.C., Purohit, H.J., 2011. Genomic analysis reveals versatile organisms for quorum quenching enzymes: acyl-homoserine lactone-acylase and -lactonase. Open Microbiol. 5, 1-13.
  90. Kallenbach, C.M., Wallenstein, M.D., Schipanksi, M.E., Grandy, A.S., 2019. Managing agroecosystems for soil microbial carbon use efficiency: ecological unknowns, potential outcomes, and a path forward. Front. Microbiol. 10 (10), 1146.
  91. Kearns, P.J., Shade, A., 2018. Trait-based patterns of microbial dynamics in dormancy poten- tial and heterotrophic strategy: case studies of resource-based and post-press succession. ISME J. 12, 2575-2581.
  92. Kempes, C.P., van Bodegom, P.M., Wolpert, D., Libby, E., Amend, J., Hoehler, T., 2017. Drivers of bacterial maintenance and minimal energy requirements. Front. Microbiol. 8 (8), 31.
  93. Kibblewhite, M.G., Ritz, K., Swift, M.J., 2008. Soil health in agricultural systems. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 363, 685-701.
  94. Kim, H., Lee, Y.-H., 2020. The rice microbiome: a model platform for crop holobiome. Phytobiomes J. 4, 5-18.
  95. Knief, C., 2015. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front. Microbiol. 6 (6), 1346.
  96. Krause, S., Le Roux, X., Niklaus, P.A., Bodegom, P.V., Lennon, J.T., Bertilsson, S., Grossart, H.-P., Philippot, L., Bodelier, P., 2014a. Trait-based approaches for under- standing microbial biodiversity and ecosystem functioning. Front. Microbiol. 5 (5), 251.
  97. Krause, S., van Bodegom, P.M., Cornwell, W.K., Bodelier, P.L.E., 2014b. Weak phylogenetic signal in physiological traits of methane-oxidizing bacteria. J. Evol. Biol. 27, 1240-1247.
  98. Krause, S.M.B., Meima-Franke, M., Veraart, A.J., Ren, G., Ho, A., Bodelier, P.L.E., 2018. Environmental legacy contributes to the resilience of methane consumption in a laboratory microcosm system. Sci. Rep. 8, 8862.
  99. Kuo, V., Lehmkuhl, B.K., Lennon, J.T., 2021. Resuscitation of the microbial seed bank alters plant-soil interactions. Mol. Ecol. 30, 2905-2914.
  100. Laffite, A., Florio, A., Andrianarisoa, K.S., Creuze des Chatelliers, C., Schloter-Hai, B., Ndaw, S.M., Periot, C., Schloter, M., Zeller, B., Poly, F., Le Roux, X., 2020. Biological inhibition of soil nitrification by forest tree species affects Nitrobacter populations. Environ. Microbiol. 22, 1141-1153.
  101. Lajoie, G., Kembel, S.W., 2019. Making the most of trait-based approaches for microbial ecology. Trends Microbiol. 27, 814-823.
  102. Lau, J.A., Lennon, J.T., 2012. Rapid responses of soil microorganisms improve plant fitness in novel environments. Proc. Natl. Acad. Sci. U. S. A. 109, 14058-14062.
  103. Lavorel, S., Garnier, E., 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16, 545-556.
  104. Le Roux, X., Bouskill, N.J., Niboyet, A., Barthes, L., Dijkstra, P., Field, C.B., Hungate, B.A., Lerondelle, C., Pommier, T., Tang, J., Terada, A., Tourna, M., Poly, F., 2016. Predicting the responses of soil nitrite-oxidizers to multi-factorial global change: a trait-based approach. Front. Microbiol. 7 (7), 628.
  105. Lee, K.W.K., Periasamy, S., Mukherjee, M., Xie, C., Kjelleberg, S., Rice, S.A., 2014. Biofilm development and enhanced stress resistance of a model, mixed-species commu- nity biofilm. ISME J. 8, 894-907.
  106. Leff, J.W., Lynch, R.C., Kane, N.C., Fierer, N., 2017. Plant domestication and the assembly of bacterial and fungal communities associated with strains of the common sunflower, Helianthus annuus. New Phytol. 214, 412-423.
  107. Lehmann, A., Zheng, W., Rillig, M.C., 2017. Soil biota contributions to soil aggregation. Nat. Ecol. Evol. 1, 1828-1835.
  108. Lehmann, A., Zheng, W., Ryo, M., Soutschek, K., Roy, J., Rongstock, R., Maaß, S., Rillig, M.C., 2020. Fungal traits important for soil aggregation. Front. Microbiol. 10 (10), 2904.
  109. Lennon, J.T., Jones, S.E., 2011. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat. Rev. Microbiol. 119, 119-130.
  110. Lennon, J.T., Lehmkuhl, B.K., 2016. A trait-based approach to bacterial biofilms in soil. Environ. Microbiol. 18, 2732-2742.
  111. Lennon, J.T., Aanderud, Z.T., Lehmkuhl, B.K., Schoolmaster, D.R., Jr., 2012. Mapping the niche space of soil microorganisms using taxonomy and traits. Ecology 93, 1867-1879.
  112. Leveau, J.H., 2019. A brief from the leaf: latest research to inform our understanding of the phyllosphere microbiome. Curr. Opin. Microbiol. 49, 41-49.
  113. Li, J., Mau, R.L., Dijkstra, P., Koch, B.J., Schwartz, E., Liu, X.-J.A., Morrissey, E.M., Blazewicz, S.J., Pett-Ridge, J., Stone, B.W., Hayer, M., Hungate, B.A., 2019. Predictive genomic traits for bacterial growth in culture versus actual growth in soil. ISME J. 13, 2162-2172.
  114. Li, E., Ryo, M., Kowalchuk, G.A., Bakker, P.A.H.M., Jousset, A., 2021. Rapid evolution of trait correlation networks during bacterial adaptation to the rhizosphere. Evolution 75, 1218-1229.
  115. Liechty, Z., Santos-Medellı ´n, C., Edwards, J., Nguyen, B., Mikhail, D., Eason, S., Phillips, G., Sundaresan, V., 2020. Comparative analysis of root microbiomes of rice cultivars with high and low methane emissions reveals differences in abundance of methanogenic archaea and putative upstream fermenters. mSystems 5, e00897-19.
  116. Litchman, E., Klausmeier, C.A., Schofield, O.M., Falkowski, P.G., 2007. The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecol. Lett. 10, 1170-1181.
  117. Lundberg, D., Lebeis, S., Herrera Paredes, S., Yourstone, S., Gehring, J., Malfatti, S., Tremblay, J., Engelbrektson, A., Kunin, V., Rio, T., Edgar, R., Eickhorst, T., Ley, R., Philip, H., Tringe, S., Dangl, J., 2012. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86-90.
  118. Lyu, Z., Lu, Y., 2018. Metabolic shift at the class level sheds light on adaptation of methanogens to oxidative environments. ISME J. 12, 411-423.
  119. Ma, B., Zhou, X., Zhang, Q., Qin, M., Hu, L., Yang, K., Xie, Z., Ma, W., Chen, B., Feng, H., Liu, Y., Du, G., Ma, X., Le Roux, X., 2019. How do soil micro-organisms respond to N, P and NP additions? Application of the ecological framework of (co-)limitation by multiple resources. J. Ecol. 107, 2329-2345.
  120. Madin, J.S., Nielsen, D.A., Brbic, M., Corkrey, R., Danko, D., Edwards, K., Engqvist, M.K.M., Fierer, N., Geoghegan, J.L., Gillings, M., Kyrpides, N.C., Litchman, E., Mason, C.E., Moore, L., Nielsen, S.L., Paulsen, I.T., Price, N.D., Reddy, T.B.K., Richards, M.A., Rocha, E.P.C., Schmidt, T.M., Shaaban, H., Shukla, M., Supek, F., Tetu, S.G., Vieira-Silva, S., Wattam, A.R., Westfall, D.A., Westoby, M., 2020. A synthesis of bacterial and archaeal phenotypic trait data. Sci. Data 7, 170.
  121. Madsen, J.S., Burmølle, M., Hansen, L.H., Sørensen, S.J., 2012. The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol. Med. Microbiol. 65, 183-195.
  122. Malik, A.A., Martiny, J.B.H., Brodie, E.L., Martiny, A.C., Treseder, K.K., Allison, S.D., 2020. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J. 14, 1-9.
  123. Mallon, C.A., Poly, F., Le Roux, X., Marring, I., van Elsas, J.D., Salles, J.F., 2015. Resource pulses can alleviate the biodiversity-invasion relationship in soil microbial communities. Ecology 96, 915-926.
  124. Manzoni, S., Taylor, P., Richter, A., Porporato, A., A ˚gren, G.I., 2012. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol. 196, 79-91.
  125. Margulis, L., 1990. Words as battle cries-symbiogenesis and the new field of endocytobiology. Bioscience 40, 673-677.
  126. Mariotte, P., Mehrabi, Z., Bezemer, T.M., De Deyn, G.B., Kulmatiski, A., Drigo, B., Veen, G.F., van der Heijden, M.G.A., Kardol, P., 2018. Plant-soil feedback: bridging natural and agricultural sciences. Trends Ecol. Evol. 33, 129-142.
  127. Martiny, A.C., Treseder, K., Pusch, G., 2012. Phylogenetic conservatism of functional traits in microorganisms. ISME J. 7, 830-838.
  128. Martiny, J.B.H., Jones, S.E., Lennon, J.T., Martiny, A.C., 2015. Microbiomes in light of traits: a phylogenetic perspective. Science 350, aac9323.
  129. Matson, P.A., Parton, W., Power, A., Swift, M.J., 1997. Agricultural Intensification and Ecosystem Properties. vol. 277 Science, New York, N.Y., pp. 504-509.
  130. Mazzola, M., 2002. Mechanisms of natural soil suppressiveness to soilborne diseases. Antonie Van Leeuwenhoek 81, 557-564.
  131. Moreau, D., Bardgett, R.D., Finlay, R.D., Jones, D.L., Philippot, L., 2019. A plant perspec- tive on nitrogen cycling in the rhizosphere. Funct. Ecol. 33, 540-552.
  132. Mueller, U.G., Sachs, J.L., 2015. Engineering microbiomes to improve plant and animal health. Trends Microbiol. 23, 606-617.
  133. Neal, A.L., Rossmann, M., Brearley, C., Akkari, E., Guyomar, C., Clark, I.M., Allen, E., Hirsch, P.R., 2017. Land-use influences phosphatase gene microdiversity in soils. Environ. Microbiol. 19, 2740-2753.
  134. Nelson, M.B., Martiny, A.C., Martiny, J.B.H., 2016. Global biogeography of microbial nitrogen-cycling traits in soil. Proc. Natl. Acad. Sci. U. S. A. 113, 8033-8040.
  135. Odling-Smee, F.J., Laland, K.N., Feldman, M.W., 2003. Niche Construction The Neglected Process in Evolution, Monographs in Population Biology. vol. 37, Princeton University Press, Princton.
  136. Ophir, T., Gutnick, D.L., 1994. A role for exopolysaccharides in the protection of microorganisms from desiccation. Appl. Environ. Microbiol. 60, 740-745.
  137. Ormen ˜o-Orrillo, E., Hungria, M., Martı ´nez-Romero, E., 2013. Dinitrogen-fixing prokary- otes. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (Eds.), The Prokaryotes. Springer, Berlin, Heidelberg, pp. 427-451.
  138. Ortiz, A.M., Ortiz, D., Outhwaite, C., Dalin, C., Newbold, T., 2021. A review of the interactions between biodiversity, agriculture, climate change, and international trade: research and policy priorities. One Earth 4, 88-101.
  139. Oyserman, B.O., Cordovez, V., Flores, S.S., Leite, M.F.A., Nijveen, H., Medema, M.H., Raaijmakers, J.M., 2021. Extracting the gems: genotype, environment, and microbiome interactions shaping host phenotypes. Front. Microbiol. 11 (11), 574053.
  140. Parks, J.M., Johs, A., Podar, M., Bridou, R., Hurt, R.A., Jr., Smith, S.D., Tomanicek, S.J., Qian, Y., Brown, S.D., Brandt, C.C., Palumbo, A.V., Smith, J.C., Wall, J.D., Elias, D.A., Liang, L., 2013. The genetic basis for bacterial mercury methylation. Science 339, 1332-1335.
  141. Patra, A.K., Abbadie, L., Clays-Josserand, A., Degrange, V., Grayston, S.J., Guillaumaud, N., Loiseau, P., Louault, F., Mahmood, S., Nazaret, S., Philippot, L., Poly, F., Prosser, J.I., Roux, X.L., 2006. Effects of management regime and plant species on the enzyme activity and genetic structure of N-fixing, denitrifying and nitrifying bacterial commu- nities in grassland soils. Environ. Microbiol. 8, 1005-1016.
  142. Pattnaik, S.S., Paramanantham, P., Busi, S., 2020. Agricultural importance of phyllosphere microbiome. In: Srivastava, A.K., Kashyap, P.L., Srivastava, M. (Eds.), The Plant Microbiome in Sustainable Agriculture. John Wiley & Sons, Hoboken, pp. 119-139.
  143. Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G.P., Smith, P., 2016. Climate-smart soils. Nature 532, 49-57.
  144. Pe'er, G., Zinngrebe, Y., Moreira, F., Sirami, C., Schindler, S., M€ uller, R., Bontzorlos, V., Clough, D., Beza ´k, P., Bonn, A., Hansj€ urgens, B., Lomba, A., M€ ockel, S., Passoni, G., Schleyer, C., Schmidt, J., Lakner, S., 2019. A greener path for the EU Common Agricultural Policy. Science 365, 449-451.
  145. Peralta, A.L., Stuart, D., Kent, A.D., Lennon, J.T., 2014. A social-ecological framework for "micromanaging" microbial services. Front. Ecol. Environ. 12 (9), 524-531.
  146. P erez-Jaramillo, J.E., Mendes, R., Raaijmakers, J.M., 2016. Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol. Biol. 90, 635-644.
  147. Peterson, B.D., McDaniel, E.A., Schmidt, A.G., Lepak, R.F., Janssen, S.E., Tran, P.Q., Marick, R.A., Ogorek, J.M., DeWild, J.F., Krabbenhoft, D.P., McMahon, K.D., 2020. Mercury methylation genes identified across diverse anaerobic microbial guilds in a eutrophic sulfate-enriched lake. Environ. Sci. Technol. 54, 15840-15851.
  148. Philippot, L., Hallin, S., 2011. Towards food, feed and energy crops mitigating climate change. Trends Plant Sci. 16, 476-480.
  149. Philippot, L., Bru, D., Saby, N.P.A., Cuhel, J., Arrouays, D., Simek, M., Hallin, S., 2009. Spatial patterns of bacterial taxa in nature reflect ecological traits of deep branches of the 16S rRNA bacterial tree. Environ. Microbiol. 11, 3096-3104.
  150. Philippot, L., Raaijmakers, J.M., Lemanceau, P., van der Putten, W.H., 2013. Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 11, 789-799.
  151. Pieterse, C.M.J., Zamioudis, C., Berendsen, R.L., Weller, D.M., Wees, S.C.M.V., Bakker, P.A.H.M., 2014. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52, 347-375.
  152. Poeplau, C., Helfrich, M., Dechow, R., Szoboszlay, M., Tebbe, C.C., Don, A., Greiner, B., Zopf, D., Thumm, U., Korevaar, H., Geerts, R., 2019. Increased microbial anabolism contributes to soil carbon sequestration by mineral fertilization in temperate grasslands. Soil Biol. Biochem. 130, 167-176.
  153. Po ˜lme, S., Abarenkov, K., Henrik Nilsson, R., Lindahl, B.D., Clemmensen, K.E., Kauserud, H., Nguyen, N., Kjøller, R., Bates, S.T., Baldrian, P., Frøslev, T.G., Adojaan, K., Vizzini, A., Suija, A., Pfister, D., Baral, H.-O., J€ arv, H., Madrid, H., Nord en, J., Liu, J.-K., Pawlowska, J., Po ˜ldmaa, K., P€ artel, K., Runnel, K., Hansen, K., Larsson, K.-H., Hyde, K.D., Sandoval-Denis, M., Smith, M.E., Toome-Heller, M., Wijayawardene, N.N., Menolli, N., Reynolds, N.K., Drenkhan, R., Maharachchikumbura, S.S.N., Gibertoni, T.B., Laessøe, T., Davis, W., Tokarev, Y., Corrales, A., Soares, A.M., Agan, A., Machado, A.R., Arg€ uelles-Moyao, A., Detheridge, A., de Meiras-Ottoni, A., Verbeken, A., Dutta, A.K., Cui, B.-K., Pradeep, C.K., Marı ´n, C., Stanton, D., Gohar, D., Wanasinghe, D.N., Otsing, E., Aslani, F., Griffith, G.W., Lumbsch, T.H., Grossart, H.-P., Masigol, H., Timling, I., Hiiesalu, I., Oja, J., Kupagme, J.Y., Geml, J., Alvarez-Manjarrez, J., Ilves, K., Loit, K., Adamson, K., Nara, K., K€ ungas, K., Rojas-Jimenez, K., Bitenieks, K., Irinyi, L., Nagy, L.G., Soonvald, L., Zhou, L.-W., Wagner, L., Aime, M.C., € Opik, M., Mujica, M.I., Metsoja, M., Ryberg, M., Vasar, M., Murata, M., Nelsen, M.P., Cleary, M., Samarakoon, M.C., Doilom, M., Bahram, M., Hagh-Doust, N., Dulya, O., Johnston, P., Kohout, P., Chen, Q., Tian, Q., Nandi, R., Amiri, R., Perera, R.H., dos Santos Chikowski, R., et al., 2020. FungalTraits: a user-friendly traits database of fungi and fungus-like stra- menopiles. Fungal Divers. 105, 1-16.
  154. Polz, M.F., Alm, E.J., Hanage, W.P., 2013. Horizontal gene transfer and the evolution of bacterial and archaeal population structure. Trends Genet. 29, 170-175.
  155. Power, A.G., 2010. Ecosystem services and agriculture: tradeoffs and synergies. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 365, 2959-2971.
  156. Prosser, J.I., 2015. Dispersing misconceptions and identifying opportunities for the use of 'omics' in soil microbial ecology. Nat. Rev. Microbiol. 13, 439-446.
  157. Qian, H., Huang, S., Chen, J., Wang, L., Hungate, B.A., van Kessel, C., Zhang, J., Deng, A., Jiang, Y., van Groenigen, K.J., Zhang, W., 2020. Lower-than-expected CH 4 emissions from rice paddies with rising CO 2 concentrations. Glob. Chang. Biol. 26, 2368-2376.
  158. Raguideau, S., Plancade, S., Pons, N., Leclerc, M., Laroche, B., 2016. Inferring aggregated functional traits from metagenomic data using constrained non-negative matrix factor- ization: application to fiber degradation in the human gut microbiota. PLoS Comput. Biol. 12, e1005252.
  159. Rasmann, S., Bennett, A., Biere, A., Karley, A., Guerrieri, E., 2017. Root symbionts: pow- erful drivers of plant above-and belowground indirect defenses. Insect Sci. 24, 947-960.
  160. Ray, P., Lakshmanan, V., Labb e, J.L., Craven, K.D., 2020. Microbe to microbiome: a paradigm shift in the application of microorganisms for sustainable agriculture. Front. Microbiol. 11 (11), 622926.
  161. Read, D.J., Leake, J.R., Perez-Moreno, J., 2004. Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Can. J. Bot. 82, 1243-1263.
  162. Remus-Emsermann, M.N.P., Tecon, R., Kowalchuk, G.A., Leveau, J.H.J., 2012. Variation in local carrying capacity and the individual fate of bacterial colonizers in the phyllosphere. ISME J. 6, 756-765.
  163. Rey, O., Eizaguirre, C., Angers, B., Baltazar-Soares, M., Sagonas, K., Prunier, J.G., Blanchet, S., 2020. Linking epigenetics and biological conservation: towards a conser- vation epigenetics perspective. Funct. Ecol. 34, 414-427.
  164. Rillig, M.C., Aguilar-Trigueros, C.A., Bergmann, J., Verbruggen, E., Veresoglou, S.D., Lehmann, A., 2015. Plant root and mycorrhizal fungal traits for understanding soil aggregation. New Phytol. 205, 1385-1388.
  165. Rodrı ´guez, H., Fraga, R., 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17, 319-339.
  166. Rosado, B.H.P., Almeida, L.C., Alves, L.F., Lambais, M.R., Oliveira, R.S., 2018. The importance of phyllosphere on plant functional ecology: a phyllo trait manifesto. New Phytol. 219, 1145-1149.
  167. Saleem, M., Moe, L.A., 2014. Multitrophic microbial interactions for eco-and agro-biotechnological processes: theory and practice. Trends Biotechnol. 32, 529-537.
  168. Salles, J.F., Poly, F., Schmid, B., Le Roux, X., 2009. Community niche predicts the functioning of denitrifying bacterial assemblages. Ecology 90, 3324-3332.
  169. Salles, J.F., Le Roux, X., Poly, F., 2012. Relating phylogenetic and functional diversity among denitrifiers and quantifying their capacity to predict community functioning. Front. Microbiol. 3 (3), 209.
  170. Saunois, M., Stavert, A.R., Poulter, B., Bousquet, P., Canadell, J.G., Jackson, R.B., Raymond, P.A., Dlugokencky, E.J., Houweling, S., Patra, P.K., Ciais, P., Arora, V.K., Bastviken, D., Bergamaschi, P., Blake, D.R., Brailsford, G., Bruhwiler, L., Carlson, K.M., Carrol, M., Castaldi, S., Chandra, N., Crevoisier, C., Crill, P.M., Covey, K., Curry, C.L., Etiope, G., Frankenberg, C., Gedney, N., Hegglin, M.I., H€ oglund-Isaksson, L., Hugelius, G., Ishizawa, M., Ito, A., Janssens-Maenhout, G., Jensen, K.M., Joos, F., Kleinen, T., Krummel, P.B., Langenfelds, R.L., Laruelle, G.G., Liu, L., Machida, T., Maksyutov, S., McDonald, K.C., McNorton, J., Miller, P.A., Melton, J.R., Morino, I., M€ uller, J., Murguia-Flores, F., Naik, V., Niwa, Y., Noce, S., O'Doherty, S., Parker, R.J., Peng, C., Peng, S., Peters, G.P., Prigent, C., Prinn, R., Ramonet, M., Regnier, P., Riley, W.J., Rosentreter, J.A., Segers, A., Simpson, I.J., Shi, H., Smith, S.J., Steele, L.P., Thornton, B.F., Tian, H., Tohjima, Y., Tubiello, F.N., Tsuruta, A., Viovy, N., Voulgarakis, A., Weber, T.S., van Weele, M., van der Werf, G.R., Weiss, R.F., Worthy, D., Wunch, D., Yin, Y., Yoshida, Y., Zhang, W., Zhang, Z., Zhao, Y., Zheng, B., Zhu, Q., Zhu, Q., Zhuang, Q., 2020. The global methane budget 2000-2017. Earth Syst. Sci. Data 12, 1561-1623.
  171. Schlatter, D., Kinkel, L., Thomashow, L., Weller, D., Paulitz, T., 2017. Disease suppressive soils: new insights from the soil microbiome. Phytopathology 107, 1284-1297.
  172. Schoener, T.W., 2011. The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science 331, 426-429.
  173. Schweitzer, J.A., Bailey, J.K., Rehill, B.J., Martinsen, G.D., Hart, S.C., Lindroth, R.L., Keim, P., Whitham, T.G., 2004. Genetically based trait in a dominant tree affects ecosystem processes. Ecol. Lett. 7, 127-134.
  174. Schweitzer, J.A., Juric, I., van de Voorde, T.F.J., Clay, K., van der Putten, W.H., Bailey, J.K., 2014. Are there evolutionary consequences of plant-soil feedbacks along soil gradients? Funct. Ecol. 28, 55-64.
  175. Sheard, C., Neate-Clegg, M.H.C., Alioravainen, N., Jones, S.E.I., Vincent, C., MacGregor, H.E.A., Bregman, T.P., Claramunt, S., Tobias, J.A., 2020. Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nat. Commun. 11, 2463.
  176. Shen, L.-D., Liu, J.-Q., Yang, Y.-L., Bai, Y.-N., Yang, W.-T., Tian, M.-H., Liu, X., Jin, J.-H., Han, M.-J., Ren, B.-J., Pan, Y.-Y., Wu, H.-S., 2021. Activity, abundance and community composition of nitrite-dependent methanotrophs in response to fertil- ization in paddy soils. Appl. Soil Ecol. 166, 103987.
  177. Singh, R., Shelke, G., Kumar, A., Jha, P., 2015. Biochemistry and genetics of ACC deam- inase: a weapon to "stress ethylene" produced in plants. Front. Microbiol. 6 (6), 937.
  178. Slangen, J.H.G., Kerkhoff, P., 1984. Nitrification inhibitors in agriculture and horticulture: a literature review. Fertil. Res. 5, 1-76.
  179. Smith, S.E., Smith, F.A., 2011. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu. Rev. Plant Biol. 62, 227-250.
  180. Smith, F.A., Grace, E.J., Smith, S.E., 2009. More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytol. 182, 347-358.
  181. Solano, C., Echeverz, M., Lasa, I., 2014. Biofilm dispersion and quorum sensing. Curr. Opin. Microbiol. 18, 96-104.
  182. Soudzilovskaia, N.A., van der Heijden, M.G.A., Cornelissen, J.H.C., Makarov, M.I., Onipchenko, V.G., Maslov, M.N., Akhmetzhanova, A.A., van Bodegom, P.M., 2015. Quantitative assessment of the differential impacts of arbuscular and ectomycorrhiza on soil carbon cycling. New Phytol. 208, 280-293.
  183. Soudzilovskaia, N.A., van Bodegom, P.M., Terrer, C., Zelfde, M.V.T., McCallum, I., Luke McCormack, M., Fisher, J.B., Brundrett, M.C., de Sa ´, N.C., Tedersoo, L., 2019. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 10, 5077.
  184. Spor, A., Roucou, A., Mounier, A., Bru, D., Breuil, M.-C., Fort, F., Vile, D., Roumet, P., Philippot, L., Violle, C., 2020. Domestication-driven changes in plant traits associated with changes in the assembly of the rhizosphere microbiota in tetraploid wheat. Sci. Rep. 10, 12234.
  185. Staley, J.T., 2006. The bacterial species dilemma and the genomic-phylogenetic species con- cept. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 361, 1899-1909.
  186. Steenbergh, A.K., Veraart, A.J., Ho, A., Bodelier, P.L.E., 2017. Microbial ecosystem func- tions in wetlands under disturbance. In: Tate, K.R. (Ed.), Microbial Biomass A Paradigm Shift in Terrestrial Biogeochemistry. World Scientific Publishing, Singapore, pp. 227-274.
  187. Su, J., Hu, C., Yan, X., Jin, Y., Chen, Z., Guan, Q., Wang, Y., Zhong, D., Jansson, C., Wang, F., Schn€ urer, A., Sun, C., 2015. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice. Nature 523, 602-606.
  188. Subbarao, G.V., Rondon, M., Ito, O., Ishikawa, T., Rao, I.M., Nakahara, K., Lascano, C., Berry, W.L., 2007. Biological nitrification inhibition, (BNI)-is it a widespread phenomenon? Plant Soil 294, 5-18.
  189. Subbarao, G.V., Sahrawat, K.L., Nakahara, K., Rao, I.M., Ishitani, M., Hash, C.T., Kishii, M., Bonnett, D.G., Berry, W.L., Lata, J.C., 2013. A paradigm shift towards low-nitrifying production systems: the role of biological nitrification inhibition, (BNI). Ann. Bot. 112, 297-316.
  190. Sun, L., Lu, Y., Yu, F., Kronzucker, H.J., Shi, W., 2016. Biological nitrification inhibition by rice root exudates and its relationship with nitrogen-use efficiency. New Phytol. 212, 646-656.
  191. Sutherland, W.J., Broad, S., Butchart, S.H.M., Clarke, S.J., Collins, A.M., Dicks, L.V., Doran, H., Esmail, N., Fleishman, E., Frost, N., Gaston, K.J., Gibbons, D.W., Hughes, A.C., Jiang, Z., Kelman, R., LeAnstey, B., le Roux, X., Lickorish, F.A., Monk, K.A., Mortimer, D., Pearce-Higgins, J.W., Peck, L.S., Pettorelli, N., Pretty, J., Seymour, C.L., Spalding, M.D., Wentworth, J., Ockendon, N., 2019.
  192. A horizon scan of emerging issues for global conservation in 2019. Trends Ecol. Evol. 34, 83-94.
  193. Syswerda, S., Corbin, A.T., Mokma, D.L., Kravchenko, A., Robertson, G.P., 2011. Agricultural management and soil carbon storage in surface vs. deep layers. Soil Sci. Soc. Am. 75, 92-101.
  194. Tedersoo, L., Brundrett, M.C., 2017. Evolution of ectomycorrhizal symbiosis in plants. In: Tedersoo, L. (Ed.), Biogeography of Mycorrhizal Symbiosis. Springer International Publishing, Cham, pp. 407-467.
  195. terHorst, C.P., Zee, P.C., 2016. Eco-evolutionary dynamics in plant-soil feedbacks. Funct. Ecol. 30, 1062-1072.
  196. Treseder, K.K., Lennon, J.T., 2015. Fungal traits that drive ecosystem dynamics on land. Microbiol. Mol. Biol. Rev. 79, 243-262.
  197. Vaksmaa, A., Guerrero-Cruz, S., van Alen, T.A., Cremers, G., Ettwig, K.F., L€ uke, C., Jetten, M.S.M., 2017. Enrichment of anaerobic nitrate-dependent methanotrophic 'Candidatus Methanoperedens nitroreducens' archaea from an Italian paddy field soil. Appl. Microbiol. Biotechnol. 101, 7075-7084.
  198. van Bodegom, P.M., 2007. Microbial maintenance: a critical review on its quantification. Microb. Ecol. 53, 513-523.
  199. Van Bodegom, P.M., Douma, J.C., Witte, J.P.M., Ordonez, J.C., Bartholomeus, R.P., Aerts, R., 2012. Going beyond limitations of plant functional types when predicting global ecosystem-atmosphere fluxes: exploring the merits of traits-based approaches. Glob. Ecol. Biogeogr. 21, 625-636.
  200. Van Deynze, A., Zamora, P., Delaux, P.-M., Heitmann, C., Jayaraman, D., Rajasekar, S., Graham, D., Maeda, J., Gibson, D., Schwartz, K.D., Berry, A.M., Bhatnagar, S., Jospin, G., Darling, A., Jeannotte, R., Lopez, J., Weimer, B.C., Eisen, J.A., Shapiro, H.-Y., An e, J.-M., Bennett, A.B., 2018. Nitrogen fixation in a landrace of maize is supported by a mucilage-associated diazotrophic microbiota. PLoS Biol. 16, e2006352.
  201. Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A., Dufresne, A., 2015. The importance of the microbiome of the plant holobiont. New Phytol. 206, 1196-1206.
  202. Velusamy, P., Immanuel, J.E., Gnanamanickam, S.S., Thomashow, L., 2006. Biological control of rice bacterial blight by plant-associated bacteria producing 2,4-diacetylphloroglucinol. Can. J. Microbiol. 52, 56-65.
  203. Verbruggen, E., R€ oling, W.F., Gamper, H.A., Kowalchuk, G.A., Verhoef, H.A., van der Heijden, M.G., 2010. Positive effects of organic farming on below-ground mutualists: large-scale comparison of mycorrhizal fungal communities in agricultural soils. New Phytol. 186, 968-979.
  204. Verhoeven, K.J.F., vonHoldt, B.M., Sork, V.L., 2016. Epigenetics in ecology and evolution: what we know and what we need to know. Mol. Ecol. 25, 1631-1638.
  205. Violle, C., Navas, M.L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., Garnier, E., 2007. Let the concept of trait be functional! Oikos 116, 882-892.
  206. Vorholt, J.A., 2012. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10, 828-840.
  207. Warner, R.R., Chesson, P.L., 1985. Coexistence mediated by recruitment fluctuations: a field guide to the storage effect. Am. Nat. 125 (6), 769-787.
  208. Weedon, J.T., Kowalchuk, G., Aerts, R., van Hal, J., van Logtestijn, R., Tas ¸, N., R€ oling, W.F.M., van Bodegom, P., 2012. Summer warming accelerates sub-arctic peatland nitrogen cycling without changing enzyme pools or microbial community structure. Glob. Chang. Biol. 18, 138-150.
  209. Wei, Z., Jousset, A., 2017. Plant breeding goes microbial. Trends Plant Sci. 22, 555-558.
  210. Wen, X., Yang, S., Horn, F., Winkel, M., Wagner, D., Liebner, S., 2017. Global biogeo- graphic analysis of methanogenic archaea identifies community-shaping environmental factors of natural environments. Front. Microbiol. 8 (8), 1339.
  211. Wieder, W.R., Allison, S.D., Davidson, E.A., Georgiou, K., Hararuk, O., He, Y., Hopkins, F., Luo, Y., Smith, M.J., Sulman, B., Todd-Brown, K., Wang, Y.-P., Xia, J., Xu, X., 2015. Explicitly representing soil microbial processes in Earth system models. Global Biogeochem. Cycles 29 (10), 1782-1800.
  212. Willbanks, A., Leary, M., Greenshields, M., Tyminski, C., Heerboth, S., Lapinska, K., Haskins, K., Sarkar, S., 2016. The evolution of epigenetics: from prokaryotes to humans and its biological consequences. Genet. Epigenet. 8, GEG.S31863.
  213. Wilson, D., 2016. Microbial diversity and cellulase production. In: Vijai Kumar Gupta, V.K. (Ed.), New and Future Developments in Microbial Biotechnology and Bioengineering Microbial Cellulase System Properties and Applications. Elsevier, Amsterdam, pp. 43-48.
  214. Wood, S.A., Karp, D.S., DeClerck, F., Kremen, C., Naeem, S., Palm, C.A., 2015. Functional traits in agriculture: agrobiodiversity and ecosystem services. Trends Ecol. Evol. 30, 531-539.
  215. Wu, Q., Hu, H., Meng, B., Wang, B., Poulain, A.J., Zhang, H., Liu, J., Bravo, A.G., Bishop, K., Bertilsson, S., Feng, X., 2020. Methanogenesis is an important process in controlling mehg concentration in rice paddy soils affected by mining activities. Environ. Sci. Technol. 54, 13517-13526.
  216. Xu, J., Buck, M., Ekl€ of, K., Ahmed, O.O., Schaefer, J.K., Bishop, K., Skyllberg, U., Bj€ orn, E., Bertilsson, S., Bravo, A.G., 2019. Mercury methylating microbial communities of boreal forest soils. Sci. Rep. 9, 518.
  217. Yan, Y., Yang, J., Dou, Y., Chen, M., Ping, S., Peng, J., Lu, W., Zhang, W., Yao, Z., Li, H., Liu, W., He, S., Geng, L., Zhang, X., Yang, F., Yu, H., Zhan, Y., Li, D., Lin, Z., Wang, Y., Elmerich, C., Lin, M., Jin, Q., 2008. Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. Proc. Natl. Acad. Sci. U. S. A. 105, 7564-7569.
  218. Zakharova, L., Meyer, K.M., Seifan, M., 2019. Trait-based modelling in ecology: a review of two decades of research. Ecol. Model. 407, 108703.
  219. Zanne, A.E., Abarenkov, K., Afkhami, M.E., Aguilar-Trigueros, C.A., Bates, S., Bhatnagar, J.M., Busby, P.E., Christian, N., Cornwell, W.K., Crowther, T.W., Flores-Moreno, H., Floudas, D., Gazis, R., Hibbett, D., Kennedy, P., Lindner, D.L., Maynard, D.S., Milo, A.M., Nilsson, R.H., Powell, J., Schildhauer, M., Schilling, J., Treseder, K.K., 2020. Fungal functional ecology: bringing a trait-based approach to plant-associated fungi. Biol. Rev. Camb. Philos. Soc. 95, 409-433.
  220. Zhao, L., Meng, B., Feng, X., 2020. Mercury methylation in rice paddy and accumulation in rice plant: a review. Ecotoxicol. Environ. Saf. 195, 110462.
  221. Zhou, Z., Wang, C., Luo, Y., 2020. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat. Commun. 11, 3072.
  222. Zhu, Y.G., Smith, S.E., Barritt, A.R., Smith, F.A., 2001. Phosphorus (P) efficiencies and mycorrhizal responsiveness of old and modern wheat cultivars. Plant Soil 237, 249-255.
  223. Zhu, Q.H., Shan, W.X., Ayliffe, M.A., Wang, M.B., 2016. Epigenetic mechanisms: an emerging player in plant-microbe interactions. Mol. Plant-Microbe Interact. 29, 187-196.