Academia.eduAcademia.edu

Outline

Genome-wide analyses reveal drivers of penguin diversification

2020, Proceedings of the National Academy of Sciences

https://doi.org/10.1073/PNAS.2006659117

Abstract

Significance Penguins have long been of interest to scientists and the general public, but their evolutionary history remains unresolved. Using genomes, we investigated the drivers of penguin diversification. We found that crown-group penguins diverged in the early Miocene in Australia/New Zealand and identified Aptenodytes (emperor and king penguins) as the sister group to all other extant penguins. Penguins first occupied temperate environments and then radiated to cold Antarctic waters. The Antarctic Circumpolar Current’s (ACC) intensification 11.6 Mya promoted penguin diversification and geographic expansion. We detected interspecies introgression among penguins, in some cases following the direction of the ACC, and identified genes acting on thermoregulation, oxygen metabolism, and diving capacity that underwent adaptive evolution as they progressively occupied more challenging thermal niches.

References (63)

  1. Egevang C, et al. (2010) Tracking of Arctic terns <em>Sterna paradisaea</em> reveals longest animal migration. Proceedings of the National Academy of Sciences 107(5):2078- 2081.
  2. Péron C & Grémillet D (2013) Tracking through Life Stages: Adult, Immature and Juvenile Autumn Migration in a Long-Lived Seabird. PLOS ONE 8(8):e72713.
  3. Thomas DB & Fordyce RE (2012) Biological Plasticity in Penguin Heat-Retention Structures. Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology 295(2):249-256.
  4. Gavryushkina A, et al. (2017) Bayesian Total-Evidence Dating Reveals the Recent Crown Radiation of Penguins. Systematic Biology 66(1):57-73.
  5. Baker AJ, Pereira SL, Haddrath OP, & Edge KA (2006) Multiple gene evidence for expansion of extant penguins out of Antarctica due to global cooling. Proc Biol Sci 273(1582):11-17.
  6. Clarke JA, et al. (2007) Paleogene equatorial penguins challenge the proposed relationship between biogeography, diversity, and Cenozoic climate change. Proc Natl Acad Sci U S A 104(28):11545-11550.
  7. Ksepka D.T. BS, Giannini N. (2006) The phylogeny of the living and fossil Sphenisciformes (penguins). Cladistics 22:412-441.
  8. Subramanian S, Beans-Picon G, Swaminathan SK, Millar CD, & Lambert DM (2013) Evidence for a recent origin of penguins. Biol Lett 9(6):20130748.
  9. Cole TL, et al. (2019) Mitogenomes Uncover Extinct Penguin Taxa and Reveal Island Formation as a Key Driver of Speciation. Mol Biol Evol 36(4):784-797.
  10. Pan H, et al. (2019) High-coverage genomes to elucidate the evolution of penguins. GigaScience 8(9).
  11. Figueiró HV, et al. (2017) Genome-wide signatures of complex introgression and adaptive evolution in the big cats. Science Advances 3(7):e1700299.
  12. Degrange FJ, Ksepka DT, & Tambussi CP (2018) Redescription of the oldest crown clade penguin: cranial osteology, jaw myology, neuroanatomy, and phylogenetic affinities of Madrynornis mirandus. Journal of Vertebrate Paleontology 38(2):e1445636.
  13. Bertelli S & Giannini NP (2005) A phylogeny of extant penguins (Aves: Sphenisciformes) combining morphology and mitochondrial sequences. Cladistics 21(3):209-239.
  14. Vianna JA, et al. (2017) Marked phylogeographic structure of Gentoo penguin reveals an ongoing diversification process along the Southern Ocean. Mol Phylogenet Evol 107:486- 498.
  15. Frugone MJ, et al. (2018) Contrasting phylogeographic pattern among Eudyptes penguins around the Southern Ocean. Sci Rep 8(1):17481.
  16. Munro KJ & Burg TM (2017) A review of historical and contemporary processes affecting population genetic structure of Southern Ocean seabirds. Emu -Austral Ornithology 117(1):4-18.
  17. Frugone MJ, et al. (2019) More than the eye can see: Genomic insights into the drivers of genetic differentiation in Royal/Macaroni penguins across the Southern Ocean. Molecular Phylogenetics and Evolution 139:106563.
  18. Clucas GV, et al. (2018) Comparative population genomics reveals key barriers to dispersal in Southern Ocean penguins. Molecular Ecology 27(23):4680-4697.
  19. Pertierra L, et al. (under review) Integrated phylogenomic and niche analyses reveal cryptic speciation in Gentoo penguins driven by local adaptation. Molecular Ecology.
  20. Halanych KM & Mahon AR (2018) Challenging Dogma Concerning Biogeographic Patterns of Antarctica and the Southern Ocean. Annual Review of Ecology, Evolution, and Systematics 49:355-378.
  21. Dunstan PK, et al. (2018) Global patterns of change and variation in sea surface temperature and chlorophyll a. Scientific reports 8(1):14624-14624.
  22. Weisrock DW, Harmon LJ, & Larson A (2005) Resolving deep phylogenetic relationships in salamanders: analyses of mitochondrial and nuclear genomic data. Syst Biol 54(5):758-777.
  23. Oliveros CH, et al. (2019) Earth history and the passerine superradiation. Proceedings of the National Academy of Sciences 116(16):7916-7925.
  24. Simeone A, et al. (2009) Heterospecific Pairing and Hybridization between Wild Humboldt and Magellanic Penguins in Southern Chile (BIOONE) pp 544-550, 547.
  25. Goldner A, Herold N, & Huber M (2014) Antarctic glaciation caused ocean circulation changes at the Eocene-Oligocene transition. Nature 511(7511):574-577.
  26. Dalziel IWD, et al. (2013) A potential barrier to deep Antarctic circumpolar flow until the late Miocene? Geology 41(9).
  27. Crame JA (2018) Key stages in the evolution of the Antarctic marine fauna. Journal of Biogeography 45(5):986-994.
  28. Glasser NF, Jansson KN, Harrison S, & Kleman J (2008) The glacial geomorphology and Pleistocene history of South America between 38°S and 56°S. Quaternary Science Reviews 27(3):365-390.
  29. Williams CL, Hagelin JC, & Kooyman GL (2015) Hidden keys to survival: the type, density, pattern and functional role of emperor penguin body feathers. Proceedings of the Royal Society B-Biological Sciences 282(1817).
  30. Boersma PD (1998) Population trends of the Galapagos penguin: Impacts of El Nino and La Nina. Condor 100(2):245-253.
  31. Boersma D (1975) Adaptations of Galapagos penguins for life in two different environments. The biology of penguins, ed Stonehouse B (Macmillan, London), pp 101- 114.
  32. Butler PJ & Jones DR (1997) Physiology of diving of birds and mammals. Physiological Reviews 77(3):837-899.
  33. Ponganis PJ & Kooyman GL (2000) Diving physiology of birds: a history of studies on polar species. Comparative Biochemistry and Physiology a-Molecular and Integrative Physiology 126(2):143-151.
  34. Williams CL, Meir JU, & Ponganis PJ (2011) What triggers the aerobic dive limit? Patterns of muscle oxygen depletion during dives of emperor penguins. The Journal of Experimental Biology 214(11):1802-1812.
  35. Wienecke B, Robertson G, Kirkwood R, & Lawton K (2007) Extreme dives by free- ranging emperor penguins. Polar Biology 30(2):133-142.
  36. Putz K & Cherel Y (2005) The diving behaviour of brooding king penguins (Aptenodytes patagonicus) from the Falkland Islands: variation in dive profiles and synchronous underwater swimming provide new insights into their foraging strategies. Marine Biology 147(2):281-290.
  37. Kokubun N, Takahashi A, Mori Y, Watanabe S, & Shin HC (2010) Comparison of diving behavior and foraging habitat use between chinstrap and gentoo penguins breeding in the South Shetland Islands, Antarctica. Marine Biology 157(4):811-825.
  38. Kowalczyk ND, Reina RD, Preston TJ, & Chiaradia A (2015) Environmental variability drives shifts in the foraging behaviour and reproductive success of an inshore seabird. Oecologia 178(4):967-979.
  39. Berlincourt M & Arnould JPY (2015) Influence of environmental conditions on foraging behaviour and its consequences on reproductive performance in little penguins. Marine Biology 162(7):1485-1501.
  40. Thiebot JB, et al. (2014) Adjustment of pre-moult foraging strategies in Macaroni Penguins Eudyptes chrysolophus according to locality, sex and breeding status. Ibis 156(3):511-522.
  41. Nadachowska-Brzyska K, Li C, Smeds L, Zhang G, & Ellegren H (2015) Temporal Dynamics of Avian Populations during Pleistocene Revealed by Whole-Genome Sequences. Curr Biol 25(10):1375-1380.
  42. Cole TL, et al. (2019) Receding ice drove parallel expansions in Southern Ocean penguins. Proceedings of the National Academy of Sciences 116(52):26690-26696.
  43. Pinsky ML, Eikeset AM, McCauley DJ, Payne JL, & Sunday JM (2019) Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569(7754):108- 111.
  44. Wiens JJ (2016) Climate-Related Local Extinctions Are Already Widespread among Plant and Animal Species. PLoS biology 14(12):e2001104-e2001104.
  45. Cimino MA, Lynch HJ, Saba VS, & Oliver MJ (2016) Projected asymmetric response of Adélie penguins to Antarctic climate change. Scientific Reports 6:28785.
  46. Fretwell PT & Trathan PN (2019) Emperors on thin ice: three years of breeding failure at Halley Bay. Antarctic Science:1-6.
  47. Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, & Zdobnov EM (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31(19):3210-3212.
  48. Mapleson D, Garcia Accinelli G, Kettleborough G, Wright J, & Clavijo BJ (2017) KAT: a K-mer analysis toolkit to quality control NGS datasets and genome assemblies. Bioinformatics (Oxford, England) 33(4):574-576.
  49. Faircloth BC (2016) PHYLUCE is a software package for the analysis of conserved genomic loci. Bioinformatics 32(5):786-788.
  50. Katoh K & Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772-780.
  51. Kozlov AM, Darriba D, Flouri T, Morel B, & Stamatakis A (2018) RAxML-NG: A fast, scalable, and user-friendly tool for maximum likelihood phylogenetic inference. bioRxiv:447110.
  52. Nguyen L-T, Schmidt HA, von Haeseler A, & Minh BQ (2015) IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Molecular Biology and Evolution 32(1):268-274.
  53. Bouckaert R, et al. (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10(4):e1003537.
  54. Miller MA, Pfeiffer W, & Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. 2010 Gateway Computing Environments Workshop (GCE), pp 1-8.
  55. Pease JB & Hahn MW (2015) Detection and polarization of introgression in a five-taxon phylogeny. Systematic Biology 64(4):651-662
  56. Matzke N (2013) BioGeoBEARS: BioGeography with Bayesian (and Likelihood) Evolutionary Analysis in R Scripts. University of California, Berkeley, Berkeley, CA. .
  57. Phillips SJ, Anderson RP, & Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling 190(3-4):231-259.
  58. Huerta-Cepas J, Serra F, & Bork P (2016) ETE 3: Reconstruction, Analysis, and Visualization of Phylogenomic Data. Mol Biol Evol 33(6):1635-1638.
  59. Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Computer applications in the biosciences : CABIOS 13(5):555-556.
  60. Wang J, Vasaikar S, Shi Z, Greer M, & Zhang B (2017) WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res 45(W1):W130-W137.
  61. Szklarczyk D, et al. (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47(D1):D607-d613.
  62. Li H & Durbin R (2011) Inference of human population history from individual whole- genome sequences. Nature 475(7357):493-496.
  63. Nam K, et al. (2010) Molecular evolution of genes in avian genomes. Genome Biol 11(6):R68.