Artificial intelligence and ambient intelligence
2019, Journal of Ambient Intelligence and Smart Environments
https://doi.org/10.3233/AIS-180508Abstract
Ambient intelligence (AmI) is intrinsically and thoroughly connected with artificial intelligence (AI). Some even say that it is, in essence, AI in the environment. AI, on the other hand, owes its success to the phenomenal development of the information and communication technologies (ICTs), based on principles such as Moore's law. In this paper we give an overview of the progress in AI and AmI interconnected with ICT through information-society laws, superintelligence, and several related disciplines, such as multi-agent systems and the Semantic Web, ambient assisted living and e-healthcare, AmI for assisting medical diagnosis, ambient intelligence for e-learning and ambient intelligence for smart cities. Besides a short history and a description of the current state, the frontiers and the future of AmI and AI are also considered in the paper.
References (81)
- S.A. Ahmed, Applying Deep Learning for Energy Forecasting, M.Sc. Thesis, the University of Hong, Kong, August, 2017.
- M. Arribas-Ayllon, Ambient Intelligence: An innovation narra- tive, available at http://www.academia.edu/1080720/Ambient_ Intelligence_an_innovation_narrative, 2003.
- S. Asteriadis, P. Tzouveli, K. Karpouzis and S. Kollias, Esti- mation of behavioral user state based on eye gaze and head pose -Application in an e-learning environment, Multimedia Tools Application 41, (2009), 469-493. doi:10.1007/s11042- 008-0240-1.
- J.C. Augusto and H. Aghajan, Thematic issue: Computer vi- sion for ambient intelligence preface, Journal of Ambient In- telligence and Smart Environments 3(3) (2011), 185. doi:10. 3233/AIS-2011-0116.
- J.C. Augusto and P. McCullagh, Ambient intelligence: Con- cepts and applications, Computer Science and Information Sys- tems 4(1) (2007), 1-27. doi:10.2298/CSIS0701001A.
- I. Ayala, M. Amor and L. Fuentes, The Sol agent platform: Enabling group communication and interoperability of self- configuring agents in the Internet of Things, Journal of Am- bient Intelligence and Smart Environments 7(2) (2015), 243- 269.
- A.A. Aziz, M.C. Klein and J. Treur, An integrative ambi- ent agent model for unipolar depression relapse prevention, Journal of Ambient Intelligence and Smart Environments 2(1) (2010), 5-20.
- K. Bäckström, M. Nazari, I.Y.H. Gu and A.S. Jakola, An effi- cient 3D deep convolutional network for Alzheimer's disease diagnosis using MR images, in: Proc. of 2018 IEEE 15th Inter- national Symposium on Biomedical Imaging (ISBI'18), 2018, pp. 149-153. doi:10.1109/ISBI.2018.8363543.
- T. Berners-Lee, J. Hendler and O. Lassila, The semantic web, Scientific American 284(5) (2001), 34-43. doi:10.1038/ scientificamerican0501-34.
- T. Bosse (ed.), Agents and Ambient Intelligence: Achievements and Challenges in the Intersection of Agent, Vol. 12, IOS Press, Amsterdam. 2012.
- T. Bosse, M. Hoogendoorn, M.C. Klein and J. Treur, An am- bient agent model for monitoring and analysing dynamics of complex human behaviour, Journal of Ambient Intelligence and Smart Environments 3(4) (2011), 283-303.
- N. Bostrom, Superintelligence -Paths, Dangers, Strategies, Oxford University Press, Oxford, UK, 2014.
- J. Brownlee, Machine Learning Mastery, available at http:// machinelearningmastery.com/, last visited in 2018.
- P. Campillo-Sanchez, E. Serrano and J.A. Botía, Testing context-aware services based on smartphones by agent based social simulation, Journal of Ambient Intelligence and Smart Environments 5(3) (2013), 311-330.
- V. Cantoni, M. Cellario and M. Porta, Perspectives and chal- lenges in e-learning: Towards natural interaction paradigms, Journal of Visual Languages and Computing 15 (2004), 333- 345.
- K. Chang, H.X. Bai, H. Zhou, C. Su, W.L. Bi, E. Ag- bodza, V.K. Kavouridis, J.T. Senders, A. Boaro, A. Beers, B. Zhang, A. Capellini, W. Liao, Q. Shen, X. Li, B. Xiao, J. Cryan, S. Ramkissoon, L. Ramkissoon, K. Ligon, P.Y. Wen, R.S. Bindra, W.J. Arnaout O, E.R. Gerstner, P.J. Zhang, B.R. Rosen, L. Yang, R.Y. Huang and J. Kalpathy-Cramer, Residual convolutional neural network for the determination of IDH status in low-and high-grade gliomas from MR imaging, Clin. Cancer Research 25(5) (2017), 1073-1081. doi:10.1158/ 1078-0432.CCR-17-2236.
- M.A. Chatti, A.L. Dychhoff, U. Schroeder and H. Thüs, A ref- erence model for learning analytics, International Journal of Technology Enhanced Learning (IJTEL). Special Issue on "State-of-the-Art in TEL", 4(5) (2012), 318-331.
- A.A. Chien and V. Karamcheti, Moore's law: The first ending and a new beginning, Computer 46(12) (2013), 48-53. doi:10. 1109/MC.2013.431.
- J. Chin, V. Callaghan and S.B. Allouch, The Internet of Things: Reflections on the past, present and future from a user centered and smart environments perspective, Journal of Ambient Intel- ligence and Smart Environments 11(Tenth Anniversary Issue) (2019), p. 1.
- D.J. Cook, J.C. Augusto and V.R. Jakkula, Ambient intelli- gence: Technologies, applications, and opportunities, Perva- sive and Mobile Computing 5(4) (2009), 277-298. doi:10. 1016/j.pmcj.2009.04.001.
- M. Daoutis, S. Coradeshi and A. Loutfi, Grounding common- sense knowledge in intelligent systems, Journal of Ambient In- telligence and Smart Environments 1(4) (2009), 311-321.
- Definition of INTELLIGENCE, [online], available at https:// www.merriam-webster.com/dictionary/intelligence [accessed: 06-Jun-2018].
- S. Dourlens, A. Ramdane-Cherif and E. Monacelli, Tangible ambient intelligence with semantic agents in daily activities, Journal of Ambient Intelligence and Smart Environments 5(4) (2013), 351-368.
- E. Dovgan, B. Kaluža, T. Tušar and M. Gams, Improving user verification by implementing an agent-based security system, Journal of Ambient Intelligence and Smart Environments 2(1) (2010), 21-30.
- A.L. Dyckhoff, D. Zielke, M. Bültmann, M.A. Chatti and U. Schroeder, Design and implementation of a learning ana- lytics toolkit for teachers, Educational Technology & Society 15(3) (2012), 58-76.
- J. Feather, Information Society: A Study of Continuity and Change, 6th edn, in: Facet Publications (All Titles as Pub- lished), Facet Publishing, London, 2013, ISBN-13: 978- 1856048187. ISBN-10: 1856048187.
- M. Gams, Information society and the intelligent systems gen- eration, Informatica 23 (1991), 449-454.
- M. Gams, Weak Intelligence: Through the Principle and Para- dox of Multiple Knowledge, in: Advances in the Theory of Computational Mathematics, Vol. 6, Nova Science Publish- ers, New York, 2001. ISBN-10: 1560728981. ISBN-13: 978- 1560728986.
- Ó. García, R.S. Alonso, D.I. Tapia and J.M. Corchado, CAFCLA: An AmI-based framework to design and develop context-aware collaborative learning activities, in: Ambient In- telligence -Software and Applications. Advances in Intelligent Systems and Computing, A. van Berlo, K. Hallenborg, J. Ro- dríguez, D. Tapia and P. Novais, eds, Vol. 219, Springer, Hei- delberg, 2013, pp. 41-48. doi:10.1007/978-3-319-00566-9_6.
- C. Ge, I.Y.H. Gu, A.S. Jakola and J. Yang, Deep learning and multi-sensor fusion for glioma classification using multistream 2D convolutional networks, in: Proc. of 40th Annual Interna- tional Conference of the IEEE Engineering in Medicine and Biology Society (EMBC'18), 2018, pp. 5894-5897.
- C. Ge, Q. Qu, I.Y.H. Gu and A.S. Jakola, 3D multiscale con- volutional networks for glioma grading using MR images, in: Proc. of IEEE International Conference on Image Processing (ICIP'18), 2018, pp. 141-145.
- C. Gomez, S. Chessa, A. Fleury, G. Roussos and D. Preuve- neers, Internet of things for enabling smart environments: A technology-centric perspective, Journal of Ambient Intelli- gence and Smart Environments 11(Tenth Anniversary Issue) (2019), p. 1.
- I. Goodfellow, Y. Bengio and A. Courvil, Deep Learning, MIT Press, Cambridge, 2016.
- C. Gravier, J. Subercaze and A. Zimmermann, Conflict reso- lution when axioms are materialized in semantic-based smart environments, Journal of Ambient Intelligence and Smart En- vironments 7(2) (2015), 187-199.
- T.R. Gruber, A translation approach to portable ontology specifications, Knowledge Acquisition 5(2) (1993), 199-220. doi:10.1006/knac.1993.1008.
- J. Hecht, Is Keck's Law Coming to an End?, available at https://spectrum.ieee.org/semiconductors/optoelectronics/ is-kecks-law-coming-to-an-end, 2016.
- C. Hennessey, B. Noureddin and P. Lawrence, A single camera eye-gaze tracking system with free head motion, in: Proceed- ings of the Symposium on Eye Tracking Research and Applica- tions (ETRA'05), San Diego, CA, USA, 2006, pp. 87-94.
- M. Hilbert and P. López, Science 332(6025) (2011), 60-65, available at martinhilbert.net/WorldInfoCapacity.html. doi:10. 1126/science.1200970.
- IJCAI Conference, available at https://ijcai-17.org, 2017.
- J. Jang, ANFIS: Adaptive-network-based fuzzy inference sys- tems, IEEE Trans Syst. Man Cybernetics 23(3) (1993), 665- 685. doi:10.1109/21.256541.
- N.R. Jennings, K. Sycara and M. Wooldridge, A roadmap of agent research and development, Autonomous Agents and Multi-Agent Systems 1(1) (1998), 7-38. doi:10.1023/A: 1010090405266.
- Ö. Kafali, S. Bromuri, M. Sindlar, T. van der Weide, E. Aguilar Pelaez, U. Schaechtle, A. Bruno, D. Zuffery, E. Rodriguez- Villegas, M.I. Schumacher and K. Stathis, Commodity 12: A smart e-health environment for diabetes management, Jour- nal of Ambient Intelligence and Smart Environments 5(5) (2013), 479-502.
- M. Kosinski and Y. Wang, Deep neural networks are more ac- curate than humans at detecting sexual orientation from facial images, 2017, https://osf.io/zn79k/.
- R. Kurzweil, The Singularity Is Near: When Humans Tran- scend Biology, Vol. 26, Penguin Books, 2006.
- F. Liu, L.Q. Zhang, Y. Wang, F. Lu, F.W. Sun, S.G. Zhang, W.W.T. Fok, V. Tam and J. Yi, Application of naive Bayesian classifier for teaching reform courses examination data anal- ysis in China open university system, in: Proceedings of the 2015 8th International Symposium on Computational Intelli- gence and Design (ISCID), Conference Center, Zhejiang Uni- versity, Hangzhou, PRC, December 12-13, 2015, pp. 25-29.
- Mail online, Science and technology, Vladimir Putin warns whoever cracks artificial intelli- gence will 'Rule the world', available at http:// www.dailymail.co.uk/sciencetech/article-4844322/ Putin-Leader-artificial-intelligence-rule-world.html, 2017.
- E. Markakis, G. Mastorakis, C.X. Mavromoustakis and E. Pal- lis (eds), Cloud and Fog Computing in 5G Mobile Networks: Emerging Advances and Applications, The Institution of Engi- neering and Technology, London, 2017.
- H. Nakashima, H. Aghajan and J.C. Augusto, in: Handbook of Ambient Intelligence and Smart Environments, New York, 2009.
- T. Nguyen, S.W. Loke, T. Torabi and H. Lu, PlaceComm: A framework for context-aware applications in place-based vir- tual communities, Journal of Ambient Intelligence and Smart Environments 3(1) (2011), 51-64.
- Q. Ni, I.P. de la Cruz and A.B. García Hernando, A founda- tional ontology-based model for human activity representation in smart homes, Journal of Ambient Intelligence and Smart En- vironments 8(1) (2016), 47-61. doi:10.3233/AIS-150359.
- S. Pantsar-Syväniemi, A. Purhonen, E. Ovaska, J. Kuusijärvi and A. Evesti, Situation-based and self-adaptive applications for the smart environment, Journal of Ambient Intelligence and Smart Environments 4(6) (2012), 491-516.
- A. Prati, C. Shan and K. Wang, Sensors, vision and networks: From video surveillance to activity recognition and health monitoring, Journal of Ambient Intelligence and Smart Envi- ronments 11(Tenth Anniversary Issue) (2019), p. 1.
- D. Preuveneers and P. Novais, A survey of software engineer- ing best practices for the development of smart applications in Ambient Intelligence, Journal of Ambient Intelligence and Smart Environments 4(3) (2012), 149-162.
- C. Ramos, J.C. Augusto and D. Shapiro, Ambient intelligence -The next step for artificial intelligence, IEEE Intelligent Sys- tems 23(2) (2008), 15-18. doi:10.1109/MIS.2008.19.
- A. Revell and A. Turing, Alan Turing: Enigma: The Incredible True Story of the Man Who Cracked the Code, Computing Ma- chinery and Intelligence, Mind, 1950, Paperback -August 10, 2017.
- S. Russel and P. Norvig, Artificial Intelligence: A Modern Ap- proach, 3rd edn, 2014, Pearson Education Limited, Upper Sad- dle River. ISBN-13:978-0136042594.
- S. Sarraf, G. Tofighi et al., DeepAD: Alzheimer's disease classification via deep convolutional neural networks using MRI and fMRI, bioRxiv, available at https://www.biorxiv.org/ content/early/2016/08/21/070441.full.pdf+html, 2016. doi:10. 1101/070441.
- M. Scudellari, Eye Scans to Detect Cancer and Alzheimer's Disease, available at https://spectrum. ieee.org/the-human-os/biomedical/diagnostics/ eye-scans-to-detect-cancer-and-alzheimers-disease, 2017.
- G. Shroff, The Intelligent Web: Search, Smart Algorithms, and Big Data, Oxford University Press, London, 2015.
- T.G. Stavropoulos, G. Koutitas, D. Vrakas, E. Kontopoulos and I. Vlahavas, A smart university platform for building energy monitoring and savings, Journal of Ambient Intelligence and Smart Environments 8(3) (2016), 301-323. doi:10.3233/AIS- 160375.
- N. Streitz, D. Charitos, M. Kaptein and M. Böhlen, Grand challenges for ambient intelligence and implications for design contexts and smart societies, Journal of Ambient Intelligence and Smart Environments 11(Tenth Anniversary Issue) (2019), p. 1.
- N. Streitz and P. Nixon, Special issue on 'The disappearing computer', Communications of the ACM 48(3), (2005), 32-35. doi:10.1145/1047671.1047700.
- V. Tam, E.Y. Lam, S.T. Fung, A. Yuen and W.W.T. Fok, En- hancing educational data mining techniques on online educa- tional resources with a semi-supervised learning approach, in: Proceedings of the IEEE International Conference on Teach- ing, Assessment and Learning for Engineering (TALE 2015), United International College, Zhuhai, PRC, December 10-12, 2015, pp. 210-213.
- V. Tam, E.Y. Lam and Y. Huang, Facilitating a personal- ized learning environment through learning analytics on mo- bile devices, in: Proceedings of the IEEE International Con- ference on Teaching, Assessment and Learning for Engineer- ing (TALE 2014), Wellington, New Zealand, December 8-10, 2014, pp. 8-10.
- The Kaggle Development Team, Global Energy Forecasting Competition 2012 -Load Forecasting, available at https://www.kaggle.com/c/global-energy- forecasting-competition-2012-load-forecasting, last visited in May, 2016.
- The Libelium Development Team, Top 50 Sensor Applications for A Smarter World, available at http://www.libelium.com/ resources/top_50_iot_sensor_applications_ranking, last vis- ited in May, 2018.
- The Microsoft Kinect Development Team, Kinect for Windows, available at http://www.microsoft.com/en-us/ kinectforwindows/, last visited in April, 2014.
- The United Nations, World population ageing 2013, Popu- lation Division, Department of Economic and Social Affairs (DESA), United Nations, 2013, pp. 1-95.
- The United Nations, World population prospects: The 2015 re- vision, key findings and advance tables, Population Division, Department of Economic and Social Affairs (DESA), United Nations, 2015, pp. 1-59.
- A.M. Turing, Computing machinery and intelligence, Mind 56(236) (1950), 433-460. doi:10.1093/mind/LIX.236.433.
- V. Venturini, J. Carbo and J.M. Molina, CALoR: Context- aware and location reputation model in AmI environments, Journal of Ambient Intelligence and Smart Environments 5(6) (2013), 589-604.
- R. Vetter (ed.), Computer laws revisited, Computer 46(12) (2013), 38-46.
- M. Weiser, The computer for the twenty-first century, Scien- tific American, 165 (1991), pp. 94-104. Weiser, M. (1993). Hot topics: Ubiquitous.
- G. Weiss, Multiagent Systems: A Modern Approach to Dis- tributed Artificial Intelligence, MIT Press, Cambridge, 1999.
- G. Weiss, Multiagent Systems, 2nd edn, in: Intelligent Robotics and Autonomous Agents Series, MIT Press, Cambridge, 2013. ISBN 13: 978-0262018890.
- J.M. Wilson, Computing, Communication, and Cognition, Three Laws that define the internet society: Moore's, Gilder's, and Metcalfe's, available at http://www.jackmwilson.net/ Entrepreneurship/Cases/Moores-Meltcalfes-Gilders-Law.pdf, 2012.
- M. Wooldridge, An Introduction to Multiagent Systems, John Wiley & Sons, New York, 2009.
- R.V. Yampolskiy, Artificial Superintelligence: A Futuristic Ap- proach, 1st edn, Chapman and Hall/CRC, Boca Raton, 2015.
- Y. Yun and I.Y.H. Gu, Riemannian manifold-valued part-based features and geodesic-induced kernel machine for human activ- ity classification dedicated to assisted living, Computer Vision and Image Understanding 161 (2017), 65-76. doi:10.1016/j. cviu.2017.05.012.
- Y. Yun and I.Y.H. Gu, Visual information-based activity recog- nition and fall detection for assisted living and eHealth- Care, in: Ambient Assisted Living and Enhanced Living En- vironments: Principles, Technologies and Control, C. Dobre, C. Mavromoustakis, N. Garcia, G. Mastorakis and R. Gol- eva, eds, Chapter 15, Elsevier, Amsterdam, 2017, pp. 395- 425. ISBN-13: 978-0-12-805195-5. doi:10.1016/B978-0-12- 805195-5.00015-6.
- X. Zhang, Q. Tian et al., Radiomics strategy for molecular sub- type stratification of lower-grade glioma: Detecting IDH and TP53 mutations based on multimodal MRI, Journal of Mag- netic Resonance Imaging 48(4) (2018), 916-926. doi:10.1002/ jmri.25960.