Academia.eduAcademia.edu

Outline

Host–Pathogen Interactions of Marine Gram-Positive Bacteria

Biology

https://doi.org/10.3390/BIOLOGY11091316

Abstract

Marine Gram-positive bacterial pathogens, including Renibacterium salmoninarum, Mycobacterium marinum, Nocardia seriolae, Lactococcus garvieae, and Streptococcus spp. cause economic losses in marine fish aquaculture worldwide. Comprehensive information on these pathogens and their dynamic interactions with their respective fish–host systems are critical to developing effective prophylactic measures and treatments. While much is known about bacterial virulence and fish immune response, it is necessary to synthesize the knowledge in terms of host–pathogen interactions as a centerpiece to establish a crucial connection between the intricate details of marine Gram-positive pathogens and their fish hosts. Therefore, this review provides a holistic view and discusses the different stages of the host–pathogen interactions of marine Gram-positive pathogens. Gram-positive pathogens can invade fish tissues, evade the fish defenses, proliferate in the host system, and modulate the fish immune ...

References (236)

  1. Garrity, G.M.; Winters, M.; Searles, D.B. Taxonomic Outline of the Procaryotic Genera. In Bergey's Manual of Systematic Bacteriology; Garrity, G.M., Boone, D.R., Castenholz, R.W., Eds.; Springer-Verlag: New York, NY, USA, 2001; pp. 155-166.
  2. Jensen, P.R.; Fenical, W. The Relative Abundance and Seawater Requirements of Gram-Positive Bacteria in near-Shore Tropical Marine Samples. Microb. Ecol. 1995, 29, 249-257. [CrossRef] [PubMed]
  3. Tamames, J.; Abellán, J.J.; Pignatelli, M.; Camacho, A.; Moya, A. Environmental Distribution of Prokaryotic Taxa. BMC Microbiol. 2010, 10, 85. [CrossRef] [PubMed]
  4. Bolhuis, H.; Cretoiu, M.S. What Is so Special About Marine Microorganisms? Introduction to the Marine Microbiome-From Diversity to Biotechnological Potential. In The Marine Microbiome; Stal, L.J., Silvia, M., Eds.; Springer: Cham, Switzerland, 2016.
  5. Zobell, C.E.; Upham, H.C. A List of Marine Bacteria Including Descriptions of Sixty New Species. Bull. Scripps. Inst. Oceanog. Univ. Calif. 1944, 5, 239-292.
  6. Goodfellow, M.; Haynes, J.A. Actinomycetes in Marine Sediments. In Biological, Biochemical and Biomedical Aspects of Actinomycetes; Ortiz-Ortiz, L., Ed.; Academic Press: New York, NY, USA, 1984; pp. 453-472.
  7. Wiens, G.D. Bacterial Kidney Disease (Renibacterium salmoninarum). In Fish Diseases and Disorders; Woo, P.T.K., Bruno, D.W., Eds.; CABI: Wallingford, UK, 2011; pp. 338-374.
  8. Wiens, G.D.; Rockey, D.D.; Wu, Z.; Chang, J.; Levy, R.; Crane, S.; Chen, D.S.; Capri, G.R.; Burnett, J.R.; Sudheesh, P.S.; et al. Genome Sequence of the Fish Pathogen Renibacterium salmoninarum Suggests Reductive Evolution Away from an Environmental Arthrobacter Ancestor. J. Bacteriol. 2008, 190, 6970-6982. [CrossRef]
  9. Caipang, C.M.A.; Suharman, I.; Avillanosa, A.L.; Bargoyo, V.T. Host-Derived Probiotics for Finfish Aquaculture. IOP Conf. Ser. Earth Environ. Sci. 2020, 430, 012026. [CrossRef]
  10. Teasdale, M.E.; Donovan, K.A.; Forschner-Dancause, S.R.; Rowley, D.C. Gram-Positive Marine Bacteria as a Potential Resource for the Discovery of Quorum Sensing Inhibitors. Mar. Biotechnol. 2011, 13, 722-732. [CrossRef]
  11. Nguyen, T.L.; Park, C.I.; Kim, D.H. Improved Growth Rate and Disease Resistance in Olive Flounder, Paralichthys olivaceus, by Probiotic Lactococcus lactis WFLU12 Isolated from Wild Marine Fish. Aquaculture 2017, 471, 113-120. [CrossRef]
  12. Roberts, R.J. The Bacteriology of Teleosts. In Fish pathology; Roberts, R.J., Ed.; Wiley-Blackwell: West Sussex, UK, 2012; pp. 339-382.
  13. Austin, B.; Austin, D.A. Bacterial Fish Pathogens: Disease of Farmed and Wild Fish, 6th ed.; Springer: Cham, Switzerland, 2016. [CrossRef]
  14. Aronson, J.D. Spontaneous Tuberculosis in Saltwater Fish. J. Infect. Dis. 1926, 39, 312-320. [CrossRef]
  15. Fryer, J.L.; Sanders, J.E. Bacterial Kidney Disease of Salmonid Fish. Annu. Rev. Microbiol. 1981, 35, 273-298. [CrossRef]
  16. Munn, C.B. Pathogens in the Sea: An Overview. In Ocean and Health: Pathogens in Marine Environment; Belkin, S., Colwel, R.R., Eds.; Springer Science: Boston, MA, USA, 2005. [CrossRef]
  17. Munn, C.B. Microbial Diseases of Marine Organisms. In Marine Microbiology Ecology and Applications; Taylor and Francis CRC Ebook Account: New York, NY, USA, 2011; pp. 244-245. [CrossRef]
  18. Casadevall, A.; Pirofski, L.A. Host-Pathogen Interactions: Redefining the Basic Concepts of Virulence and Pathogenicity. Infect. Immun. 1999, 67, 3703-3713. [CrossRef]
  19. Casadevall, A.; Pirofski, L.A. What Is a Host? Incorporating the Microbiota into the Damage-Response Framework. Infect. Immun. 2015, 83, 2-7. [CrossRef] [PubMed]
  20. Alizon, S.; Hurford, A.; Mideo, N.; Van Baalen, M. Virulence Evolution and the Trade-off Hypothesis: History, Current State of Affairs and the Future. J. Evol. Biol. 2009, 22, 245-259. [CrossRef] [PubMed]
  21. Méthot, P.O.; Alizon, S. What Is a Pathogen? Toward a Process View of Host-Parasite Interactions. Virulence 2014, 5, 775-785. [CrossRef] [PubMed]
  22. Casadevall, A.; Pirofski, L. Host-pathogen Interactions: The Attributes of Virulence. J. Infect. Dis. 2001, 184, 337-344. [CrossRef]
  23. Snieszko, S.F. Nutritional Fish Diseases. In Fish Nutrition; Elsevier: Amsterdam, The Netherlands, 1972; pp. 403-437. [CrossRef]
  24. Lafferty, K.D.; Harvell, C.D.; Conrad, J.M.; Friedman, C.S.; Kent, M.L.; Kuris, A.M.; Powell, E.N.; Rondeau, D.; Saksida, S.M. Infectious Diseases Affect Marine Fisheries and Aquaculture Economics. Ann. Rev. Mar. Sci. 2015, 7, 471-496. [CrossRef]
  25. Wilson, J.W.; Schurr, M.J.; LeBlanc, C.L.; Ramamurthy, R.; Buchanan, K.L.; Nickerson, C.A. Mechanisms of Bacterial Pathogenicity. Postgrad. Med. J. 2002, 78, 216-224. [CrossRef]
  26. Esperanza Cortés, M.; Consuegra Bonilla, J.; Dario Sinisterra, R. Biofilm Formation, Control and Novel Strategies for Eradication. Sci. Microb. Pathog. Commun. Curr. Res. Technol. Adv. 2011, 2, 896-905.
  27. Abdelsalam, M.; Chen, S.C.; Yoshida, T. Surface Properties of Streptococcus dysgalactiae Strains Isolated from Marine Fish. Bull. Eur. Assoc. Fish Pathol. 2009, 29, 16-24.
  28. Bruno, D. The Relationship between Auto-Agglutination, Cell Surface Hydrophobicity and Virulence of the Fish Pathogen Renibacterium salmoninarum. FEMS Microbiol. Lett. 1988, 51, 135-139. [CrossRef]
  29. Izumi, É.; Domingues Pires, P.; Bittencourt De Marques, E.; Suzart, S. Hemagglutinating and Hemolytic Activities of Enterococcus faecalis Strains Isolated from Different Human Clinical Sources. Res. Microbiol. 2005, 156, 583-587. [CrossRef]
  30. Ooyama, T.; Hirokawa, Y.; Minami, T.; Yasuda, H.; Nakai, T.; Endo, M.; Ruangpan, L.; Yoshida, T. Cell-Surface Properties of Lactococcus garvieae Strains and Their Immunogenicity in the Yellowtail Seriola quinqueradiata. Dis. Aquat. Organ. 2002, 51, 169-177. [CrossRef] [PubMed]
  31. Nomoto, R.; Munasinghe, L.I.; Jin, D.-H.; Shimahara, Y.; Yasuda, H.; Nakamura, A.; Misawa, N.; Itami, T.; Yoshida, T. Lancefield Group C Streptococcus dysgalactiae Infection Responsible for Fish Mortalities in Japan. J. Fish Dis. 2004, 27, 679-686. [CrossRef] [PubMed]
  32. Ellen, R.P.; Gibbons, R.J. M Protein-Associated Adherence of Streptococcus pyogenes to Epithelial Surfaces: Prerequisite for Virulence. Infect. Immun. 1972, 5, 826-830. [CrossRef] [PubMed]
  33. Caparon, M.G.; Stephens, D.S.; Olsén, A.; Scott, J.R. Role of M Protein in Adherence of Group A Streptococci. Infect. Immun. 1991, 59, 1811-1817. [CrossRef]
  34. Locke, J.B.; Aziz, R.K.; Vicknair, M.R.; Nizet, V.; Buchanan, J.T. Streptococcus iniae M-like Protein Contributes to Virulence in Fish and Is a Target for Live Attenuated Vaccine Development. PLoS ONE 2008, 3, e2824. [CrossRef]
  35. Wiens, G.D.; Chien, M.S.; Winton, J.R.; Kaattari, S.L. Antigenic and Functional Characterization of p57 Produced by Renibacterium salmoninarum. Dis. Aquat. Organ. 1999, 37, 43-52. [CrossRef]
  36. Wiens, G.D.; Kaattari, S.L. Monoclonal Antibody Characterization of a Leukoagglutinin Produced by Renibacterium salmoninarum. Infect. Immun. 1991, 59, 631-637. [CrossRef]
  37. Daly, J.G.; Stevenson, R.M.W. Characterization of the Renibacterium salmoninarum Haemagglutinin. J. Gen. Microbiol. 1990, 136, 949-953. [CrossRef]
  38. Dubreuil, J.D.; Jacques, M.; Graham, L.; Lallier, R. Purification, and Biochemical and Structural Characterization of a Fimbrial Haemagglutinin of Renibacterium salmoninarum. J. Gen. Microbiol. 1990, 136, 2443-2448. [CrossRef]
  39. Gao, L.-Y.; Pak, M.; Kish, R.; Kajihara, K.; Brown, E.J. A Mycobacterial Operon Essential for Virulence in vivo and Invasion and Intracellular Persistence in Macrophages. Infect. Immun. 2006, 74, 1757-1767. [CrossRef]
  40. Gauthier, D.T.; Rhodes, M.W. Mycobacteriosis in Fishes: A Review. Vet. J. 2009, 180, 33-47. [CrossRef] [PubMed]
  41. Hashish, E.; Merwad, A.; Elgaml, S.; Amer, A.; Kamal, H.; Elsadek, A.; Marei, A.; Sitohy, M. Mycobacterium marinum Infection in Fish and Man: Epidemiology, Pathophysiology and Management; a Review. Vet. Q. 2018, 38, 35-46. [CrossRef] [PubMed]
  42. Maekawa, S.; Yoshida, T.; Wang, P.C.; Chen, S.C. Current Knowledge of Nocardiosis in Teleost Fish. J. Fish Dis. 2018, 41, 413-419. [CrossRef] [PubMed]
  43. Yasuike, M.; Nishiki, I.; Iwasaki, Y.; Nakamura, Y.; Fujiwara, A.; Shimahara, Y.; Kamaishi, T.; Yoshida, T.; Nagai, S.; Kobayashi, T.; et al. Analysis of the Complete Genome Sequence of Nocardia seriolae UTF1, the Causative Agent of Fish Nocardiosis: The First Reference Genome Sequence of the Fish Pathogenic Nocardia Species. PLoS ONE 2017, 12, 1-23. [CrossRef]
  44. Eliott, D.G. Renibacterium salmoninarum. In Fish Viruses and Bacteria: Pathobiology and Protection; Woo, P.T.K., Ciaprino, R., Eds.; CABI: Wallingford, UK, 2017; pp. 286-297.
  45. Speare, D.J.; Brocklebank, J.; Macnair, N.; Bernard, K.A. Experimental Transmission of a Salmonid Rhodococcus sp. Isolate to Juvenile Atlantic Salmon, Salmo salar L. J. Fish Dis. 1995, 18, 587-597. [CrossRef]
  46. Vendrell, D.; Balcázar, J.L.; Ruiz-Zarzuela, I.; de Blas, I.; Gironés, O.; Múzquiz, J.L. Lactococcus garvieae in Fish: A Review. Comp. Immunol. Microbiol. Infect. Dis. 2006, 29, 177-198. [CrossRef]
  47. Teker, T.; Albayrak, G.; Akayli, T.; Urku, C. Detection of Haemolysin Genes as Genetic Determinants of Virulence in Lactococcus garvieae. Turk. J. Fish. Aquat. Sci. 2019, 19, 625-634. [CrossRef]
  48. Bromage, E.S.; Owens, L. Infection of Barramundi Lates calcarifer with Streptococcus iniae: Effects of Different Routes of Exposure. Dis. Aquat. Organ. 2002, 52, 199-205. [CrossRef]
  49. Buchanan, J.T.; Stannard, J.A.; Lauth, X.; Ostland, V.E.; Powell, H.C.; Westerman, M.E.; Nizet, V. Streptococcus iniae Phosphogluco- mutase is a Virulence Factor and a Target for Vaccine Development. Infect. Immun. 2005, 73, 6935-6944. [CrossRef]
  50. Locke, J.B.; Colvin, K.M.; Datta, A.K.; Patel, S.K.; Naidu, N.N.; Neely, M.N.; Nizet, V.; Buchanan, J.T. Streptococcus iniae Capsule Impairs Phagocytic Clearance and Contributes to Virulence in Fish. J. Bacteriol. 2007, 189, 1279-1287. [CrossRef]
  51. Doménech, A.; Fernández-Garayzábal, J.F.; Pascual, C.; Garcia, J.A.; Cutuli, M.T.; Moreno, M.A.; Collins, M.D.; Dominguez, L. Streptococcosis in Cultured Turbot, Scopthalmus maximus (L.), Associated with Streptococcus parauberis. J. Fish Dis. 1996, 19, 33-38.
  52. Nho, S.W.; Hikima, J.; Cha, I.S.; Park, S.B.; Jang, H.B.; del Castillo, C.S.; Kondo, H.; Hirono, I.; Aoki, T.; Jung, T.S. Complete Genome Sequence and Immunoproteomic Analyses of the Bacterial Fish Pathogen Streptococcus parauberis. J. Bacteriol. 2011, 193, 3356-3366. [CrossRef]
  53. Abdelsalam, M.; Chen, S.C.; Yoshida, T. Dissemination of Streptococcal Pyrogenic Exotoxin G (Spegg) with an IS-like Element in Fish Isolates of Streptococcus dysgalactiae. FEMS Microbiol. Lett. 2010, 309, 105-113. [CrossRef]
  54. Romalde, J.L.; Ravelo, C.; Valdés, I.; Magariños, B.; de la Fuente, E.; Martín, C.S.; Avendaño-Herrera, R.; Toranzo, A.E. Streptococcus phocae, an Emerging Pathogen for Salmonid Culture. Vet. Microbiol. 2008, 130, 198-207. [CrossRef] [PubMed]
  55. Yañez, A.J.; Godoy, M.G.; Gallardo, A.; Avendaño-Herrera, R. Identification of Streptococcus phocae Strains Associated with Mortality of Atlantic Salmon (Salmo salar) Farmed at Low Temperature in Chile. Bull. Eur. Assoc. Fish Pathol. 2013, 33, 59-66.
  56. Roberts, R.J. Bacteria from Fish and Other Aquatic Animals: A Practical Identification Manual; CABI Publishing: Wallingford, UK, 2005; Volume 28. [CrossRef]
  57. Zlotkin, A.; Chilmonczyk, S.; Eyngor, M.; Hurvitz, A.; Ghittino, C.; Eldar, A. Trojan Horse Effect: Phagocyte-Mediated Streptococcus iniae Infection of Fish. Infect. Immun. 2003, 71, 2318-2325. [CrossRef] [PubMed]
  58. Fredriksen, Å.; Endresen, C.; Wergeland, H.I. Immunosuppressive Effect of a Low Molecular Weight Surface Protein from Renibacterium salmoninarum on Lymphocytes from Atlantic Salmon (Salmo salar L.). Fish Shellfish Immunol. 1997, 7, 273-282.
  59. Brynildsrud, O.; Gulla, S.; Feil, E.J.; Nørstebø, S.F.; Rhodes, L.D. Identifying Copy Number Variation of the Dominant Virulence Factors msa and p22 within Genomes of the Fish Pathogen Renibacterium salmoninarum. Microb. Genom. 2016, 2, e000055. [CrossRef] [PubMed]
  60. Kroniger, T.; Flender, D.; Schlüter, R.; Köllner, B.; Trautwein-Schult, A.; Becher, D. Proteome Analysis of the Gram-Positive Fish Pathogen Renibacterium salmoninarum Reveals Putative Role of Membrane Vesicles in Virulence. Sci. Rep. 2022, 12, 1-11. [CrossRef] [PubMed]
  61. Rockey, D.D.; Turaga, P.S.D.; Wiens, G.D.; Cook, B.A.; Kaattari, S.L. Serine Proteinase of Renibacterium salmoninarum Digests a Major Autologous Extracellular and Cell-Surface Protein. Can. J. Microbiol. 1991, 37, 758-763. [CrossRef]
  62. Grayson, T.H.; Evenden, A.J.; Gilpin, M.L.; Munn, C.B. Production of the Major Soluble Antigen of Renibacterium salmoninarum in Escherichia coli K12. Dis. Aquat. Organ. 1995, 22, 227-231. [CrossRef]
  63. Avendaño-Herrera, R.; Saldivia, P.; Bethke, J.; Vargas, C.; Hernández, M. Proteomic Analysis Reveals Renibacterium salmoninarum Grown under Iron-limited Conditions Induces Iron Uptake Mechanisms and Overproduction of the 57-kDa Protein. J. Fish Dis. 2022, 45, 289-300. [CrossRef] [PubMed]
  64. Benhamed, S.; Guardiola, F.A.; Mars, M.; Esteban, M.Á. Pathogen Bacteria Adhesion to Skin Mucus of Fishes. Vet. Microbiol. 2014, 171, 1-12. [CrossRef]
  65. González-Contreras, A.; Magariños, B.; Godoy, M.; Irgang, R.; Toranzo, A.E.; Avendaño-Herrera, R. Surface Properties of Streptococcus phocae Strains Isolated from Diseased Atlantic Salmon, Salmo salar L. J. Fish Dis. 2011, 34, 203-215. [CrossRef] [PubMed]
  66. Sudheesh, P.S.; Crane, S.; Cain, K.D.; Strom, M.S. Sortase Inhibitor Phenyl Vinyl Sulfone Inhibits Renibacterium salmoninarum Adherence and Invasion of Host Cells. Dis. Aquat. Organ. 2007, 78, 115-127. [CrossRef] [PubMed]
  67. Joh, D.; Wann, E.R.; Kreikemeyer, B.; Speziale, P.; Höök, M. Role of Fibronectin-Binding MSCRAMMs in Bacterial Adherence and Entry into Mammalian Cells. Matrix Biol. 1999, 18, 211-223. [CrossRef]
  68. Marraffini, L.A.; DeDent, A.C.; Schneewind, O. Sortases and the Art of Anchoring Proteins to the Envelopes of Gram-Positive Bacteria. Microbiol. Mol. Biol. Rev. 2006, 70, 192-221. [CrossRef]
  69. OECD. Bacteria: Pathogenicity Factors. In Safety Assessment of Transgenic Organisms in the Environment, Volume 5: OECD Consensus Documents; OECD Publishing: Paris, France, 2016; Volume 5. [CrossRef]
  70. Nitsche-Schmitz, D.P.; Rohde, M.; Chhatwal, G.S. Invasion Mechanisms of Gram-Positive Pathogenic Cocci. Thromb. Haemost. 2007, 98, 488-496. [CrossRef]
  71. Cortez-San Martin, M.; González-Contreras, A.; Avendaño-Herrera, R. Infectivity Study of Streptococcus phocae to Seven Fish and Mammalian Cell Lines by Confocal Microscopy. J. Fish Dis. 2012, 35, 431-436. [CrossRef]
  72. Eyngor, M.; Chilmonczyk, S.; Zlotkin, A.; Manuali, E.; Lahav, D.; Ghittino, C.; Shapira, R.; Hurvitz, A.; Eldar, A. Transcytosis of Streptococcus iniae through Skin Epithelial Barriers: An in vitro Study. FEMS Microbiol. Lett. 2007, 277, 238-248. [CrossRef]
  73. Shieh, H.S. An Extracellular Toxin Produced by Fish Kidney Disease Bacterium, Renibacterium salmoninarum. Microbios Lett. 1988, 38, 27-30.
  74. Ranger, B.S.; Mahrous, E.A.; Mosi, L.; Adusumilli, S.; Lee, R.E.; Colorni, A.; Rhodes, M.; Small, P.L.C. Globally Distributed Mycobacterial Fish Pathogens Produce a Novel Plasmid-Encoded Toxic Macrolide, Mycolactone, F. Infect. Immun. 2006, 74, 6037-6045. [CrossRef] [PubMed]
  75. Skaar, E.P. The Battle for Iron between Bacterial Pathogens and Their Vertebrate Hosts. PLoS Pathog. 2010, 6, 1-2. [CrossRef] [PubMed]
  76. Goebel, W.; Chakraborty, T.; Kreft, J. Bacterial Hemolysins as Virulence Factors. Antonie Van Leeuwenhoek 1988, 54, 453-463.
  77. Locke, J.B.; Colvin, K.M.; Varki, N.; Vicknair, M.R.; Nizet, V.; Buchanan, J.T. Streptococcus iniae β-Hemolysin Streptolysin S Is a Virulence Factor in Fish Infection. Dis. Aquat. Organ. 2007, 76, 17-26. [CrossRef]
  78. Kim, M.S.; Choi, S.H.; Lee, E.H.; Nam, Y.K.; Kim, S.K.; Kim, K.H. α-Enolase, a Plasmin (Ogen) Binding and Cell Wall Associating Protein from a Fish Pathogenic Streptococcus iniae Strain. Aquaculture 2007, 265, 55-60. [CrossRef]
  79. Eberhard, T.; Kronvall, G.; Ullberg, M. Surface Bound Plasmin Promotes Migration of Streptococcus pneumoniae through Reconsti- tuted Basement Membranes. Microb. Pathog. 1999, 26, 175-181. [CrossRef]
  80. Green, E.R.; Mecsas, J. Bacterial Secretion Systems: An Overview. Microbiol. Spectr. 2016, 4, 1-4. [CrossRef]
  81. Ribet, D.; Cossart, P. How Bacterial Pathogens Colonize Their Hosts and Invade Deeper Tissues. Microbes Infect. 2015, 17, 173-183.
  82. Abdallah, A.M.; Gey van Pittius, N.C.; Champion, P.A.D.; Cox, J.; Luirink, J.; Vandenbroucke-Grauls, C.M.J.E.; Appelmelk, B.J.; Bitter, W. Type VII Secretion-Mycobacteria Show the Way. Nat. Rev. Microbiol. 2007, 5, 883-891. [CrossRef]
  83. Bottai, D.; Brosch, R. Mycobacterial PE, PPE and ESX Clusters: Novel Insights into the Secretion of These Most Unusual Protein Families. Mol. Microbiol. 2009, 73, 325-328. [CrossRef] [PubMed]
  84. Abdallah, A.M.; Verboom, T.; Hannes, F.; Safi, M.; Strong, M.; Eisenberg, D.; Musters, R.J.P.; Vandenbroucke-Grauls, C.M.J.E.; Appelmelk, B.J.; Luirink, J.; et al. A Specific Secretion System Mediates PPE41 Transport in Pathogenic Mycobacteria. Mol. Microbiol. 2006, 62, 667-679. [CrossRef] [PubMed]
  85. Weerdenburg, E.M.; Abdallah, A.M.; Rangkuti, F.; El Ghany, M.A.; Otto, T.D.; Adroub, S.A.; Molenaar, D.; Ummels, R.; ter Veen, K.; van Stempvoort, G.; et al. Genome-Wide Transposon Mutagenesis Indicates That Mycobacterium marinum Customizes Its Virulence Mechanisms for Survival and Replication in Different Hosts. Infect. Immun. 2015, 83, 1778-1788. [CrossRef] [PubMed]
  86. Gröschel, M.I.; Sayes, F.; Simeone, R.; Majlessi, L.; Brosch, R. ESX Secretion Systems: Mycobacterial Evolution to Counter Host Immunity. Nat. Rev. Microbiol. 2016, 14, 677-691. [CrossRef]
  87. Abdallah, A.M.; Verboom, T.; Weerdenburg, E.M.; Gey van Pittius, N.C.; Mahasha, P.W.; Jimenez, C.; Parra, M.; Cadieux, N.; Brennan, M.J.; Appelmelk, B.J.; et al. PPE and PE_PGRS Proteins of Mycobacterium marinum Are Transported via the Type VII Secretion System ESX-5. Mol. Microbiol. 2009, 73, 329-340. [CrossRef]
  88. Brennan, M.J.; Delogu, G.; Chen, Y.; Bardarov, S.; Kriakov, J.; Alavi, M.; Jacobs, W.R.J. Evidence That Mycobacterial PE_PGRS Proteins Are Cell Surface Constituents That Influence Interactions with Other Cells. Infect. Immun. 2001, 69, 7326-7333. [CrossRef]
  89. Banu, S.; Honoré, N.; Saint-Joanis, B.; Philpott, D.; Prévost, M.-C.; Cole, S.T. Are the PE-PGRS Proteins of Mycobacterium tuberculosis Variable Surface Antigens? Mol. Microbiol. 2002, 44, 9-19. [CrossRef]
  90. Delogu, G.; Pusceddu, C.; Bua, A.; Fadda, G.; Brennan, M.J.; Zanetti, S. Rv1818c-Encoded PE_PGRS Protein of Mycobacterium tuberculosis Is Surface Exposed and Influences Bacterial Cell Structure. Mol. Microbiol. 2004, 52, 725-733. [CrossRef]
  91. Abdallah, A.M.; Savage, N.D.L.; van Zon, M.; Wilson, L.; Vandenbroucke-Grauls, C.M.J.E.; van der Wel, N.N.; Ottenhoff, T.H.M.; Bitter, W. The ESX-5 Secretion System of Mycobacterium marinum Modulates the Macrophage Response. J. Immunol. 2008, 181, 7166-7175. [CrossRef]
  92. Weerdenburg, E.M.; Abdallah, A.M.; Mitra, S.; De Punder, K.; Van der Wel, N.N.; Bird, S.; Appelmelk, B.J.; Bitter, W.; Van der Sar, A.M. ESX-5-Deficient Mycobacterium marinum Is Hypervirulent in Adult Zebrafish. Cell. Microbiol. 2012, 14, 728-739. [CrossRef]
  93. Zhang, W.; Rong, C.; Chen, C.; Gao, G.F. Type-IVC Secretion System: A Novel Subclass of Type IV Secretion System (T4SS) Common Existing in Gram-positive Genus Streptococcus. PLoS ONE 2012, 7, e46390. [CrossRef] [PubMed]
  94. Flano, E.; Kaattari, S.L.; Razquin, B.; Villena, A.J. Histopathology of the Thymus of Coho Salmon Oncorhynchus kisutch Experimen- tally Infected with Renibacterium salmoninarum. Dis. Aquat. Org. 1996, 26, 11-18. [CrossRef]
  95. Rose, A.S.; Levine, R.P. Complement-Mediated Opsonisation and Phagocytosis of Renibacterium salmoninarum. Fish Shellfish Immunol. 1992, 2, 223-240. [CrossRef]
  96. Bruno, D.W. Histopathology of Bacterial Kidney Disease in Laboratory Infected Rainbow Trout, Salmo gairdneri Richardson, and Atlantic Salmon, Salmo salar L., with Reference to Naturally Infected Fish. J. Fish Dis. 1986, 9, 523-537. [CrossRef]
  97. Gao, L.-Y.; Laval, F.; Lawson, E.H.; Groger, R.K.; Woodruff, A.; Morisaki, J.H.; Cox, J.S.; Daffe, M.; Brown, E.J. Requirement for KasB in Mycobacterium Mycolic Acid Biosynthesis, Cell Wall Impermeability and Intracellular Survival: Implications for Therapy. Mol. Microbiol. 2003, 49, 1547-1563. [CrossRef] [PubMed]
  98. Ooyama, T.; Kera, A.; Okada, T.; Inglis, V.; Yoshida, T. The Protective Immune Response of Yellowtail Seriola quinqueradiata to the Bacterial Fish Pathogen Lactococcus garvieae. Dis. Aquat. Organ. 1999, 37, 121-126. [CrossRef]
  99. Buchanan, J.T.; Colvin, K.M.; Vicknair, M.R.; Patel, S.K.; Timmer, A.M.; Nizet, V. Strain-Associated Virulence Factors of Streptococ- cus iniae in Hybrid-Striped Bass. Vet. Microbiol. 2008, 131, 145-153. [CrossRef] [PubMed]
  100. Raghunathan, A.; Reed, J.; Shin, S.; Palsson, B.; Daefler, S. Constraint-Based Analysis of Metabolic Capacity of Salmonella Typhimurium during Host-Pathogen Interaction. BMC Syst. Biol. 2009, 3, 38. [CrossRef]
  101. Slauch, J.M. How Does the Oxidative Burst of Macrophages Kill Bacteria? Still an Open Question. Mol. Microbiol. 2011, 80, 580-583. [CrossRef]
  102. Uribe-Quero, E.; Rosales, C. Control of Phagocytosis by Microbial Pathogens. Front. Immunol. 2017, 8, 1-23. [CrossRef]
  103. Ordal, E.J.; Earp, B.J. Cultivation and Transmission of Etiological Agent of Kidney Disease in Salmonid Fishes. Proc. Soc. Exp. Biol. Med. 1956, 92, 85-88. [CrossRef] [PubMed]
  104. Campos-Pérez, J.J.; Ellis, A.E.; Secombes, C.J. Investigation of Factors Influencing the Ability of Renibacterium salmoninarum to Stimulate Rainbow Trout Macrophage Respiratory Burst Activity. Fish Shellfish Immunol. 1997, 7, 555-566. [CrossRef]
  105. Ellis, A.E. Immunity to Bacteria in Fish. Fish Shellfish Immunol. 1999, 9, 291-308. [CrossRef]
  106. Gutenberger, S.K.; Duimstra, J.R.; Rohovec, J.S.; Fryer, J.L. Intracellular Survival of Renibacterium salmoninarum in Trout Mononu- clear Phagocytes. Dis. Aquat. Org. 1997, 28, 93-106. [CrossRef]
  107. Grayson, T.H.; Gilpin, M.L.; Evenden, A.J.; Munn, C.B. Evidence for the Immune Recognition of Two Haemolysins of Renibacterium salmoninarum by Fish Displaying Clinical Symptoms of Bacterial Kidney Disease (BKD). Fish Shellfish Immunol. 2001, 11, 367-370. [CrossRef] [PubMed]
  108. Evenden, A.J.; Gilpin, M.L.; Munn, C.B. The Cloning and Expression of a Gene Encoding Haemolytic Activity from the Fish Pathogen Renibacterium salmoninarum. FEMS Microbiol. Lett. 1990, 59, 31-34. [CrossRef]
  109. McIntosh, D.; Flaño, E.; Grayson, T.H.; Gilpin, M.L.; Austin, B.; Villena, A.J. Production of Putative Virulence Factors by Renibacterium salmoninarum Grown in Cell Culture. Microbiology 1997, 143, 3349-3356. [CrossRef]
  110. Elanco. Technical Report: An Overview of Emerging Diseases in the Salmonid Farming Industry. Elanco Canada Ltd., 2018. Available online: https://www.vetinst.no/rapporter-og-publikasjoner/rapporter/2019/an-overview-of-emerging- diseases-in-the-salmonid-farming-industry-technical-report/_/attachment/download/879fcbae-cc63-4a88-9391-fff0c18580f9: d79c3cf13885c938419d77c9cca12e5e1ab2b4d6/Emerging%20diseases%20techinical%20report%20-%20january%202019.pdf (accessed on 21 November 2021).
  111. Pascho, R.J.; Elliott, D.G.; Chase, D.M. Comparison of Traditional and Molecular Methods for Detection of Renibacterium salmoninarum. In Molecular Diagnosis of Salmonid Diseases; Springer Dordrecht: Dordrecht, The Netherlands, 2002; pp. 157-209.
  112. Stamm, L.M.; Morisaki, J.H.; Gao, L.Y.; Jeng, R.L.; McDonald, K.L.; Roth, R.; Takeshita, S.; Heuser, J.; Welch, M.D.; Brown, E.J. Mycobacterium marinum Escapes from Phagosomes and Is Propelled by Actin-Based Motility. J. Exp. Med. 2003, 198, 1361-1368.
  113. Garin, J.; Diez, R.; Kieffer, S.; Dermine, J.F.; Duclos, S.; Gagnon, E.; Sadoul, R.; Rondeau, C.; Desjardins, M. The Phagosome Proteome: Insight into Phagosome Functions. J. Cell Biol. 2001, 152, 165-180. [CrossRef]
  114. Gauthier, D.T.; Vogelbein, W.K.; Ottinger, C.A. Ultrastructure of Mycobacterium marinum Granuloma in Striped Bass Morone saxatilis. Dis. Aquat. Organ. 2004, 62, 121-132. [CrossRef]
  115. Chen, S.C.; Adams, A.; Thompson, K.D.; Richards, R.H. Electron Microscope Studies of the in Vitro Phagocytosis of Mycobacterium Spp. by Rainbow Trout Oncorhynchus mykiss Head Kidney Macrophages. Dis. Aquat. Organ. 1998, 32, 99-110. [CrossRef] [PubMed]
  116. El-Etr, S.H.; Yan, L.; Cirillo, J.D. Fish Monocytes as a Model for Mycobacterial Host-Pathogen Interactions. Infect. Immun. 2001, 69, 7310-7317. [CrossRef]
  117. Walburger, A.; Koul, A.; Ferrari, G.; Nguyen, L.; Prescianotto-Baschong, C.; Huygen, K.; Klebl, B.; Thompson, C.; Bacher, G.; Pieters, J. Protein Kinase G from Pathogenic Mycobacteria Promotes Survival within Macrophages. Science 2004, 304, 1800-1804. [CrossRef] [PubMed]
  118. Braunstein, M.; Espinosa, B.J.; Chan, J.; Belisle, J.T.; Jacobs, W.R.J. SecA2 Functions in the Secretion of Superoxide Dismutase A and in the Virulence of Mycobacterium tuberculosis. Mol. Microbiol. 2003, 48, 453-464. [CrossRef] [PubMed]
  119. Jensen, K.; Ranganathan, U.D.K.; Van Rompay, K.K.A.; Canfield, D.R.; Khan, I.; Ravindran, R.; Luciw, P.A.; Jacobs, W.R.J.; Fennelly, G.; Larsen, M.H.; et al. A Recombinant Attenuated Mycobacterium tuberculosis Vaccine Strain Is Safe in Immunosuppressed Simian Immunodeficiency Virus-Infected Infant Macaques. Clin. Vaccine Immunol. 2012, 19, 1170-1181. [CrossRef] [PubMed]
  120. Watkins, B.Y.; Joshi, S.A.; Ball, D.A.; Leggett, H.; Park, S.; Kim, J.; Austin, C.D.; Paler-Martinez, A.; Xu, M.; Downing, K.H.; et al. Mycobacterium marinum SecA2 Promotes Stable Granulomas and Induces Tumor Necrosis Factor Alpha in vivo. Infect. Immun. 2012, 80, 3512-3520. [CrossRef]
  121. Sullivan, J.T.; Young, E.F.; McCann, J.R.; Braunstein, M. The Mycobacterium tuberculosis SecA2 System Subverts Phagosome Maturation to Promote Growth in Macrophages. Infect. Immun. 2012, 80, 996-1006. [CrossRef]
  122. Van der Woude, A.D.; Stoop, E.J.M.; Stiess, M.; Wang, S.; Ummels, R.; van Stempvoort, G.; Piersma, S.R.; Cascioferro, A.; Jiménez, C.R.; Houben, E.N.G.; et al. Analysis of SecA2-Dependent Substrates in Mycobacterium marinum Identifies Protein Kinase G (PknG) as a Virulence Effector. Cell. Microbiol. 2014, 16, 280-295. [CrossRef]
  123. Weddle, E.; Agaisse, H. Principles of Intracellular Bacterial Pathogen Spread from Cell to Cell. PLoS Pathog. 2018, 14, e1007380. [CrossRef]
  124. Parikka, M.; Hammarén, M.M.; Harjula, S.K.E.; Halfpenny, N.J.A.; Oksanen, K.E.; Lahtinen, M.J.; Pajula, E.T.; Iivanainen, A.; Pesu, M.; Rämet, M. Mycobacterium marinum Causes a Latent Infection That Can Be Reactivated by Gamma Irradiation in Adult Zebrafish. PLoS Pathog. 2012, 8, e1002944. [CrossRef]
  125. Bhavsar, A.P.; Guttman, J.A.; Finlay, B.B. Manipulation of Host-Cell Pathways by Bacterial Pathogens. Nature 2007, 449, 827-834.
  126. Southwood, D.; Ranganathan, S. Host-Pathogen Interactions; Elsevier Ltd.: Amsterdam, The Netherlands, 2018; Volume 1-3.
  127. Kehl-Fie, T.E.; Skaar, E.P. Nutritional Immunity beyond Iron: A Role for Manganese and Zinc. Curr. Opin. Chem. Biol. 2010, 14, 218-224. [CrossRef]
  128. Hood, M.I.; Skaar, E.P. Nutritional Immunity: Transition Metals at the Pathogen-Host Interface. Nat. Rev. Microbiol. 2012, 10, 525-537. [CrossRef]
  129. Wilson, B.R.; Bogdan, A.R.; Miyazawa, M.; Hashimoto, K.; Tsuji, Y. Siderophores in Iron Metabolism: From Mechanism to Therapy Potential. Trends Mol. Med. 2016, 22, 1077-1090. [CrossRef]
  130. Andreini, C.; Bertini, I.; Cavallaro, G.; Holliday, G.L.; Thornton, J.M. Metal Ions in Biological Catalysis: From Enzyme Databases to General Principles. J. Biol. Inorg. Chem. 2008, 13, 1205-1218. [CrossRef]
  131. Miethke, M.; Marahiel, M.A. Siderophore-Based Iron Acquisition and Pathogen Control. Microbiol. Mol. Biol. Rev. 2007, 71, 413-451. [CrossRef]
  132. Weinberg, E.D. Iron and Infection. Microbiol. Rev. 1978, 42, 45-66. [CrossRef]
  133. Barber, M.F.; Elde, N.C. Buried Treasure: Evolutionary Perspectives on Microbial Iron Piracy. Trends Genet. 2015, 31, 627-636.
  134. Litwin, C.M.; Calderwood, S.B. Role of Iron in Regulation of Virulence Genes. Clin. Microbiol. Rev. 1993, 6, 137-149. [CrossRef]
  135. Grayson, T.H.; Bruno, D.W.; Evenden, A.J.; Gilpin, M.L.; Munn, C.B. Iron Acquisition by Renibacterium salmoninarum: Contribution of Iron Reductase. Dis. Aquat. Organ. 1995, 22, 157-162. [CrossRef]
  136. Bethke, J.; Poblete-Morales, M.; Irgang, R.; Yáñez, A.; Avendaño-Herrera, R. Iron Acquisition and Siderophore Production in the Fish Pathogen Renibacterium salmoninarum. J. Fish Dis. 2016, 39, 1275-1283. [CrossRef]
  137. Adams, T.J.; Vartivarian, S.; Cowart, R.E. Iron Acquisition Systems of Listeria Monocytogenes. Infect. Immun. 1990, 58, 2715-2718.
  138. Johnson, W.; Varner, L.; Poch, M. Acquisition of Iron by Legionella pneumophila: Role of Iron Reductase. Infect. Immun. 1991, 59, 2376-2381. [CrossRef]
  139. Ratledge, C. Iron Metabolism and Infection. Food Nutr. Bull. 2007, 28, S515-S523. [CrossRef] [PubMed]
  140. Bethke, J.; Arias-Muñoz, E.; Yáñez, A.; Avendaño-Herrera, R. Renibacterium salmoninarum Iron-Acquisition Mechanisms and ASK Cell Line Infection: Virulence and Immune Response. J. Fish Dis. 2019, 42, 1283-1291. [CrossRef] [PubMed]
  141. Bethke, J.; Yáñez, A.J.; Avendaño-Herrera, R. Comparative Genomic Analysis of Two Chilean Renibacterium salmoninarum Isolates and the Type Strain ATCC 33209T. Genome Biol. Evol. 2018, 10, 1816-1822. [CrossRef] [PubMed]
  142. Nobles, C.L.; Maresso, A.W. The Theft of Host Heme by Gram-Positive Pathogenic Bacteria. Metallomics 2011, 3, 788-796.
  143. Allen, C.E.; Burgos, J.M.; Schmitt, M.P. Analysis of Novel Iron-Regulated, Surface-Anchored Hemin-Binding Proteins in Corynebacterium diphtheriae. J. Bacteriol. 2013, 195, 2852-2863. [CrossRef]
  144. Banner, C.R.; Rohovec, J.S.; Fryer, J.L. A New Value for Mol Percent Guanine + Cytosine of DNA for the Salmonid Fish Pathogen Renibacterium salmoninarum. FEMS Microbiol. Lett. 1991, 63, 57-59. [CrossRef]
  145. Andrews, S.C.; Robinson, A.K.; Rodríguez-Quiñones, F. Bacterial Iron Homeostasis. FEMS Microbiol. Rev. 2003, 27, 215-237.
  146. Retamales, J.; González-Contreras, A.; Salazar, S.; Toranzo, A.E.; Avendaño-Herrera, R. Iron Utilization and Siderophore Production by Streptococcus phocae Isolated from Diseased Atlantic Salmon (Salmo salar). Aquaculture 2012, 364-365, 305-311.
  147. Brown, J.S.; Holden, D.W. Iron Acquisition by Gram-Positive Bacterial Pathogens. Microbes Infect. 2002, 4, 1149-1156. [CrossRef]
  148. Boltaña, S.; Roher, N.; Goetz, F.W.; MacKenzie, S.A. PAMPs, PRRs and the Genomics of Gram Negative Bacterial Recognition in Fish. Dev. Comp. Immunol. 2011, 35, 1195-1203. [CrossRef] [PubMed]
  149. Sahoo, B.R. Structure of Fish Toll-like Receptors (TLR) and NOD-like Receptors (NLR). Int. J. Biol. Macromol. 2020, 161, 1602-1617.
  150. Palti, Y. Toll-like Receptors in Bony Fish: From Genomics to Function. Dev. Comp. Immunol. 2011, 35, 1263-1272. [CrossRef]
  151. Foster, S.L.; Hargreaves, D.C.; Medzhitov, R. Gene-Specific Control of Inflammation by TLR-Induced Chromatin Modifications. Nature 2007, 447, 972-978. [CrossRef]
  152. Iwasaki, A.; Medzhitov, R. Regulation of Adaptive Immunity by the Innate Immune System. Science 2010, 327, 291-295. [CrossRef]
  153. Takeuchi, O.; Akira, S. Pattern Recognition Receptors and Inflammation. Cell 2010, 140, 805-820. [CrossRef]
  154. Byadgi, O.; Chen, Y.C.; Barnes, A.C.; Tsai, M.A.; Wang, P.C.; Chen, S.C. Transcriptome Analysis of Grey Mullet (Mugil cephalus) after Challenge with Lactococcus garvieae. Fish Shellfish Immunol. 2016, 58, 593-603. [CrossRef]
  155. Byadgi, O.; Chen, C.W.; Wang, P.C.; Tsai, M.A.; Chen, S.C. De Novo Transcriptome Analysis of Differential Functional Gene Expression in Largemouth Bass (Micropterus salmoides) after Challenge with Nocardia seriolae. Int. J. Mol. Sci. 2016, 17, 1315.
  156. Qi, Z.; Wu, P.; Zhang, Q.; Wei, Y.; Wang, Z.; Qiu, M.; Shao, R.; Li, Y.; Gao, Q. Transcriptome Analysis of Soiny Mullet (Liza Haematocheila) Spleen in Response to Streptococcus dysgalactiae. Fish Shellfish Immunol. 2016, 49, 194-204. [CrossRef] [PubMed]
  157. Zhang, J.; Kong, X.; Zhou, C.; Li, L.; Nie, G.; Li, X. Toll-like Receptor Recognition of Bacteria in Fish: Ligand Specificity and Signal Pathways. Fish Shellfish Immunol. 2014, 41, 380-388. [CrossRef] [PubMed]
  158. Meijer, A.H.; Krens, S.F.G.; Rodriguez, I.A.M.; He, S.; Bitter, W.; Snaar-Jagalska, B.E.; Spaink, H.P. Expression Analysis of the Toll-like Receptor and TIR Domain Adaptor Families of Zebrafish. Mol. Immunol. 2004, 40, 773-783. [CrossRef] [PubMed]
  159. Miettinen, M.; Sareneva, T.; Julkunen, I.; Matikainen, S. IFNs Activate Toll-like Receptor Gene Expression in Viral Infections. Genes Immun. 2001, 2, 349-355. [CrossRef]
  160. Pietretti, D.; Wiegertjes, G.F. Ligand Specificities of Toll-like Receptors in Fish: Indications from Infection Studies. Dev. Comp. Immunol. 2014, 43, 205-222. [CrossRef] [PubMed]
  161. Liu, F.; Su, B.; Fu, Q.; Shang, M.; Gao, C.; Tan, F.; Li, C. Identification, Characterization and Expression Analysis of TLR5 in the Mucosal Tissues of Turbot (Scophthalmus maximus L.) Following Bacterial Challenge. Fish Shellfish Immunol. 2017, 68, 272-279.
  162. Eslamloo, K.; Kumar, S.; Caballero-Solares, A.; Gnanagobal, H.; Santander, J.; Rise, M.L. Profiling the Transcriptome Response of Atlantic Salmon Head Kidney to Formalin-Killed Renibacterium salmoninarum. Fish Shellfish Immunol. 2020, 98, 937-949. [CrossRef]
  163. Eslamloo, K.; Caballero-Solares, A.; Inkpen, S.M.; Emam, M.; Kumar, S.; Bouniot, C.; Avendaño-Herrera, R.; Jakob, E.; Rise, M.L. Transcriptomic Profiling of the Adaptive and Innate Immune Responses of Atlantic Salmon to Renibacterium salmoninarum Infection. Front. Immunol. 2020, 11, 567838. [CrossRef]
  164. Sullivan, C.; Charette, J.; Catchen, J.; Lage, C.R.; Giasson, G.; Postlethwait, J.H.; Millard, P.J.; Kim, C.H. The Gene History of Zebrafish Tlr4a and Tlr4b Is Predictive of Their Divergent Functions. J. Immunol. 2009, 183, 5896-5908. [CrossRef]
  165. Hwang, S.D.; Kondo, H.; Hirono, I.; Aoki, T. Molecular Cloning and Characterization of Toll-like Receptor 14 in Japanese Flounder, Paralichthys olivaceus. Fish Shellfish Immunol. 2011, 30, 425-429. [CrossRef]
  166. Ford, M.J. Molecular Evolution of Transferrin: Evidence for Positive Selection in Salmonids. Mol. Biol. Evol. 2001, 18, 639-647. [CrossRef] [PubMed]
  167. Lee, J.H.; Pooley, N.J.; Mohd-Adnan, A.; Martin, S.A.M. Cloning and Characterisation of Multiple Ferritin Isoforms in the Atlantic Salmon (Salmo salar). PLoS ONE 2014, 9, e103729. [CrossRef] [PubMed]
  168. Buhler, D.R. Studies on Fish Hemoglobins. J. Biol. Chem. 1962, 238, 1665-1674. [CrossRef]
  169. Wicher, K.B.; Fries, E. Haptoglobin, a Hemoglobin-Binding Plasma Protein, Is Present in Bony Fish and Mammals but Not in Frog and Chicken. Proc. Natl. Acad. Sci. USA 2006, 103, 4168-4173. [CrossRef]
  170. Hirayama, M.; Kobiyama, A.; Kinoshita, S.; Watabe, S. The Occurrence of Two Types of Hemopexin-like Protein in Medaka and Differences in Their Affinity to Heme. J. Exp. Biol. 2004, 207, 1387-1398. [CrossRef]
  171. Zhou, Z.; Feng, C.; Liu, X.; Liu, S. 3nLcn2, a Teleost Lipocalin 2 That Possesses Antimicrobial Activity and Inhibits Bacterial Infection in Triploid Crucian Carp. Fish Shellfish Immunol. 2020, 102, 47-55. [CrossRef]
  172. Zou, J.; Secombes, C.J. The Function of Fish Cytokines. Biology 2016, 5, 23. [CrossRef]
  173. Nemeth, E.; Tuttle, M.S.; Powelson, J.; Vaughn, M.B.; Donovan, A.; Ward, D.M.; Ganz, T.; Kaplan, J. Hepcidin Regulates Cellular Iron Efflux by Binding to Ferroportin and Inducing Its Internalization. Science 2004, 306, 2090-2093. [CrossRef]
  174. Nemeth, E.; Ganz, T. Regulation of Iron Metabolism by Hepcidin. Annu. Rev. Nutr. 2006, 26, 323-342. [CrossRef]
  175. Bury, N.; Grosell, M. Iron Acquisition by Teleost Fish. Comp. Biochem. Physiol. 2003, 135, 97-105. [CrossRef]
  176. Torti, F.M.; Torti, S.V. Regulation of Ferritin Genes and Protein. Blood 2002, 99, 3505-3516. [CrossRef] [PubMed]
  177. Walker, R.L.; Fromm, P.O. Metabolism of Iron by Normal and Iron Deficient Rainbow Trout. Comp. Biochem. Physiol. A Comp. Physiol. 1976, 55, 311-318. [CrossRef]
  178. Ganz, T. Iron and Infection. Int. J. Hematol. 2018, 107, 7-15. [CrossRef] [PubMed]
  179. Neves, J.V.; Caldas, C.; Vieira, I.; Ramos, M.F.; Rodrigues, P.N.S. Multiple Hepcidins in a Teleost Fish, Dicentrarchus labrax: Different Hepcidins for Different Roles. J. Immunol. 2015, 195, 2696-2709. [CrossRef] [PubMed]
  180. Lauth, X.; Babon, J.J.; Stannard, J.A.; Singh, S.; Nizet, V.; Carlberg, J.M.; Ostland, V.E.; Pennington, M.W.; Norton, R.S.; Westerman, M.E. Bass Hepcidin Synthesis, Solution Structure, Antimicrobial Activities and Synergism, and in vivo Hepatic Response to Bacterial Infections. J. Biol. Chem. 2005, 280, 9272-9282. [CrossRef]
  181. Neves, J.V.; Ramos, M.F.; Moreira, A.C.; Silva, T.; Gomes, M.S.; Rodrigues, P.N.S. Hamp1 but Not Hamp2 Regulates Ferroportin in Fish with Two Functionally Distinct Hepcidin Types. Sci. Rep. 2017, 7, 14793. [CrossRef]
  182. Hirono, I.; Hwang, J.-Y.; Ono, Y.; Kurobe, T.; Ohira, T.; Nozaki, R.; Aoki, T. Two Different Types of Hepcidins from the Japanese Flounder Paralichthys olivaceus. FEBS J. 2005, 272, 5257-5264. [CrossRef]
  183. Metzger, D.C.; Elliott, D.G.; Wargo, A.; Park, L.K.; Purcell, M.K. Pathological and Immunological Responses Associated with Differential Survival of Chinook Salmon Following Renibacterium salmoninarum Challenge. Dis. Aquat. Organ. 2010, 90, 31-41.
  184. Gnanagobal, H.; Cao, T.; Hossain, A.; Dang, M.; Hall, J.R.; Kumar, S.; Van Cuong, D.; Boyce, D.; Santander, J. Lumpfish (Cyclopterus lumpus) Is Susceptible to Renibacterium salmoninarum Infection and Induces Cell-Mediated Immunity in the Chronic Stage. Fron. Immunol. 2021, 12, 733266. [CrossRef]
  185. Liu, C.; Hu, X.; Cao, Z.; Sun, Y.; Chen, X.; Zhang, Z. Construction and Characterization of a DNA Vaccine Encoding the SagH against Streptococcus iniae. Fish Shellfish Immunol. 2019, 89, 71-75. [CrossRef]
  186. Jiang, J.; Miyata, M.; Chan, C.; Ngoh, S.Y.; Liew, W.C.; Saju, J.M.; Ng, K.S.; Wong, F.S.; Lee, Y.S.; Chang, S.F.; et al. Differential Transcriptomic Response in the Spleen and Head Kidney Following Vaccination and Infection of Asian Seabass with Streptococcus iniae. PLoS ONE 2014, 9, e99128. [CrossRef]
  187. Salazar, S.; Oliver, C.; Yáñez, A.J.; Avendaño-Herrera, R. Comparative Analysis of Innate Immune Responses to Streptococcus phocae Strains in Atlantic Salmon (Salmo salar) and Rainbow Trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2016, 51, 97-103. [CrossRef] [PubMed]
  188. Ziklo, N.; Colorni, A.; Gao, L.Y.; Du, S.J.; Ucko, M. Humoral and Cellular Immune Response of European Seabass Dicentrarchus labrax Vaccinated with Heat-Killed Mycobacterium marinum (iipA::Kan Mutant). J. Aquat. Anim. Health 2018, 30, 312-324.
  189. Zhang, Q.; Wang, X.; Zhang, D.; Long, M.; Wu, Z.; Feng, Y.; Hao, J.; Wang, S.; Liao, Q.; Li, A. De Novo Assembly and Analysis of Amur Sturgeon (Acipenser schrenckii) Transcriptome in Response to Mycobacterium marinum Infection to Identify Putative Genes Involved in Immunity. J. Microbiol. Biotechnol. 2019, 29, 1324-1334. [CrossRef] [PubMed]
  190. Matsumoto, M.; Araki, K.; Hayashi, K.; Takeuchi, Y.; Shiozaki, K.; Suetake, H.; Yamamoto, A. Adjuvant Effect of Recombinant Interleukin-12 in the Nocardiosis Formalin-Killed Vaccine of the Amberjack Seriola dumerili. Fish Shellfish Immunol. 2017, 67, 263-269. [CrossRef] [PubMed]
  191. Bayne, C.J.; Gerwick, L. The Acute Phase Response and Innate Immunity of Fish. Dev. Comp. Immunol. 2001, 25, 725-743.
  192. Sussman, M. Iron and Infection. In Iron in Biochemistry and Medicine; Jacobs, A., Worwood, M., Eds.; Academic Press: New York, NY, USA, 1974; pp. 649-679.
  193. Suzumoto, B.K.; Schreck, C.B.; McIntyre, J.D. Relative Resistances of Three Transferrin Genotypes of Coho Salmon (Oncorhynchus kisutch) and Their Hematological Responses to Bacterial Kidney Disease. J. Fish. Res. Board Canada 1977, 34, 1-8. [CrossRef]
  194. Winter, G.W.; Schreck, C.B.; McIntyre, J.D. Resistance of Different Stocks and Transferrin Genotypes of Coho Salmon, Oncorhynchus kisutch, and Steelhead Trout, Salmo Gairdneri, to Bacterial Kidney Disease and Vibriosis. Fish. Bull. 1980, 77, 795-802.
  195. Stafford, J.L.; Belosevic, M. Transferrin and the Innate Immune Response of Fish: Identification of a Novel Mechanism of Macrophage Activation. Dev. Comp. Immunol. 2003, 27, 539-554. [CrossRef]
  196. Stafford, J.L.; Neumann, N.F.; Belosevic, M. Products of Proteolytic Cleavage of Transferrin Induce Nitric Oxide Response of Goldfish Macrophages. Dev. Comp. Immunol. 2001, 25, 101-115. [CrossRef]
  197. Clifton, M.C.; Corrent, C.; Strong, R.K. Siderocalins: Siderophore-Binding Proteins of the Innate Immune System. Biometals 2009, 22, 557-564. [CrossRef] [PubMed]
  198. Subramanian, S.; MacKinnon, S.L.; Ross, N.W. A Comparative Study on Innate Immune Parameters in the Epidermal Mucus of Various Fish Species. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 2007, 148, 256-263. [CrossRef] [PubMed]
  199. Brogden, G.; Propsting, M.; Adamek, M.; Naim, H.Y.; Steinhagen, D. Isolation and Analysis of Membrane Lipids and Lipid Rafts in Common Carp (Cyprinus carpio L.). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2014, 169, 9-15. [CrossRef] [PubMed]
  200. Ben Hamed, S.; Tavares Ranzani-Paiva, M.J.; Tachibana, L.; de Carla Dias, D.; Ishikawa, C.M.; Esteban, M.A. Fish Pathogen Bacteria: Adhesion, Parameters Influencing Virulence and Interaction with Host Cells. Fish Shellfish Immunol. 2018, 80, 550-562.
  201. Grayson, T.H.; Cooper, L.F.; Wrathmell, A.B.; Roper, J.; Evenden, A.J.; Gilpin, M.L. Host Responses to Renibacterium salmoninarum and Specific Components of the Pathogen Reveal the Mechanisms of Immune Suppression and Activation. Immunology 2002, 106, 273-283. [CrossRef]
  202. Pandey, A.K.; Yang, Y.; Jiang, Z.; Fortune, S.M.; Coulombe, F.; Behr, M.A.; Fitzgerald, K.A.; Sassetti, C.M.; Kelliher, M.A. NOD2, RIP2 and IRF5 Play a Critical Role in the Type I Interferon Response to Mycobacterium tuberculosis. PLoS Pathog. 2009, 5, e1000500.
  203. Leong, J.C.; Trobridge, G.D.; Kim, C.H.; Johnson, M.; Simon, B. Interferon-Inducible Mx Proteins in Fish. Immunol. Rev. 1998, 166, 349-363. [CrossRef]
  204. Kim, C.H.; Johnson, M.C.; Drennan, J.D.; Simon, B.E.; Thomann, E.; Leong, J.A. DNA Vaccines Encoding Viral Glycoproteins Induce Nonspecific Immunity and Mx Protein Synthesis in Fish. J. Virol. 2000, 74, 7048-7054. [CrossRef]
  205. Collet, B.; Secombes, C.J. The Rainbow Trout (Oncorhynchus mykiss) Mx1 Promoter. Structural and Functional Characterization. Eur. J. Biochem. 2001, 268, 1577-1584. [CrossRef]
  206. Rhodes, L.D.; Wallis, S.; Demlow, S.E. Genes Associated with an Effective Host Response by Chinook Salmon to Renibacterium salmoninarum. Dev. Comp. Immunol. 2009, 33, 176-186. [CrossRef]
  207. Elliott, D.G.; Wiens, G.D.; Hammell, K.L.; Rhodes, L.D. Vaccination against Bacterial Kidney Disease. Fish Vaccin. 2014, 9780470674, 255-272. [CrossRef]
  208. Munang'andu, H. Intracellular Bacterial Infections: A Challenge for Developing Cellular Mediated Immunity Vaccines for Farmed Fish. Microorganisms 2018, 6, 33. [CrossRef] [PubMed]
  209. Sami, S.; Fischer-Scherl, T.; Hoffmann, R.W.; Pfeil-Putzien, C. Immune Complex-Mediated Glomerulonephritis Associated with Bacterial Kidney Disease in the Rainbow Trout (Oncorhynchus mykiss). Vet. Pathol. 1992, 29, 169-174. [CrossRef]
  210. Lumsden, J.S.; Russell, S.; Huber, P.; Wybourne, B.A.; Ostland, V.E.; Minamikawa, M.; Ferguson, H.W. An Immune-Complex Glomerulonephritis of Chinook Salmon, Oncorhynchus tshawytscha (Walbaum). J. Fish Dis. 2008, 31, 889-898. [CrossRef]
  211. Kaattari, S.L.; Piganelli, J.D. Immunization with Bacterial Antigens: Bacterial Kidney Disease. Dev. Biol. Stand. 1997, 90, 145-152.
  212. Hardie, L.J.; Ellis, A.E.; Secombes, C.J. in vitro Activation of Rainbow Trout Macrophages Stimulates Inhibition of Renibacterium salmoninarum Growth Concomitant with Augmented Generation of Respiratory Burst Products. Dis. Aquat. Organ. 1996, 25, 175-183. [CrossRef]
  213. Campos-Perez, J.J.; Ward, M.; Grabowski, P.S.; Ellis, A.E.; Secombes, C.J. The Gills Are an Important Site of INOS Expression in Rainbow Trout Oncorhynchus mykiss after Challenge with the Gram-positive Pathogen Renibacterium salmoninarum. Immunology 2000, 99, 153-161. [CrossRef]
  214. Jansson, E.; Hongslo, T.; Johannisson, A.; Pilström, L.; Timmusk, S.; Norrgren, L. Bacterial Kidney Disease as a Model for Studies of Cell Mediated Immunity in Rainbow Trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2003, 14, 347-362. [CrossRef]
  215. Sakai, M.; Atsuta, S.; Kobayashi, M. Protective Immune Response in Rainbow Trout, Oncorhynchus mykiss, Vaccinated with β-Haemolytic Streptococcal Bacterin. Fish Pathol. 1989, 24, 169-173. [CrossRef]
  216. Jiang, J.; Fisher, E.M.; Murasko, D.M. CD8 T Cell Responses to Influenza Virus Infection in Aged Mice. Ageing Res. Rev. 2011, 10, 422-427. [CrossRef]
  217. Raberg, L.; Sim, D.; Read, A.F. Disentangling Genetic Variation for Resistance and Tolerance to Infectious Diseases in Animals. Science 2007, 318, 812-814. [CrossRef] [PubMed]
  218. Sako, H. Acquired Immunity of Yellowtail, Seriola quinqueradiata Recovered from Experimental Infection with β-Hemolytic Streptococcus Sp. Aquac. Sci. 1992, 40, 389-392.
  219. Purcell, M.K.; McKibben, C.L.; Pearman-Gillman, S.; Elliott, D.G.; Winton, J.R. Effects of Temperature on Renibacterium salmoni- narum Infection and Transmission Potential in Chinook Salmon, Oncorhynchus tshawytscha (Walbaum). J. Fish Dis. 2016, 39, 787-798. [CrossRef] [PubMed]
  220. Yanong, R.P.E.; Francis-floyd, R. Circular 57: Streptococcal Infections of Fish. University of Florida. 2013, pp. 1-5. Available online: https://edis.ifas.ufl.edu/pdf/FA/FA05700.pdf (accessed on 22 November 2021).
  221. Rozas-Serri, M.; Lobos, C.; Correa, R.; Ildefonso, R.; Vásquez, J.; Muñoz, A.; Maldonado, L.; Jaramillo, V.; Coñuecar, D.; Oyarzún, C. Atlantic Salmon Pre-Smolt Survivors of Renibacterium salmoninarum Infection Show Inhibited Cell-Mediated Adaptive Immune Response and a Higher Risk of Death during the Late Stage of Infection at Lower Water Temperatures. Front. Immunol. 2020, 11, 1378. [CrossRef]
  222. Horzinek, M.C.; Schijns, V.E.C.; Denis, M.; Desmettre, P.; Babiuk, L.A. General Description of Vaccines. In Vet. Vaccinology; Pastoret, P.P., Blancou, J., Vannier, P., Verschueren, C., Eds.; Elsevier: Amsterdam, The Netherlands, 1997; pp. 131-152.
  223. Kum, C.; Sekki, S. The Immune System Drugs in Fish: Immune Function, Immunoassay, Drugs. Recent Adv. Fish Farms 2011. [CrossRef]
  224. Ma, J.; Bruce, T.J.; Jones, E.M.; Cain, K.D. A Review of Fish Vaccine Development Strategies: Conventional Methods and Modern Biotechnological Approaches. Microorganisms 2019, 7, 569. [CrossRef]
  225. Salonius, K.; Siderakis, C.; MacKinnon, A.M.; Griffiths, S.G. Use of Arthrobacter davidanieli as a Live Vaccine against Renibacterium salmoninarum and Piscirickettsia salmonis in Salmonids. Dev. Biol. 2005, 121, 189-197.
  226. Sun, Y.; Hu, Y.; Liu, C.; Sun, L. Construction and Analysis of an Experimental Streptococcus iniae DNA Vaccine. Vaccine 2010, 28, 3905-3912. [CrossRef]
  227. Sun, Y.; Sun, L.; Xing, M.; Liu, C.; Hu, Y. SagE Induces Highly Effective Protective Immunity against Streptococcus iniae Mainly through an Immunogenic Domain in the Extracellular Region. Acta Vet. Scand. 2013, 55, 1-9. [CrossRef]
  228. Sheng, X.; Liu, M.; Liu, H.; Tang, X.; Xing, J.; Zhan, W. Identification of Immunogenic Proteins and Evaluation of Recombinant PDHA1 and GAPDH as Potential Vaccine Candidates against Streptococcus iniae Infection in Flounder (Paralichthys olivaceus). PLoS ONE 2018, 13, e0195450. [CrossRef]
  229. Fields, K.A.; Straley, S.C. LcrV of Yersinia pestis Enters Infected Eukaryotic Cells by a Virulence Plasmid-Independent Mechanism. Infect. Immun. 1999, 67, 4801-4813. [CrossRef] [PubMed]
  230. Hill, J.; Leary, S.E.C.; Griffin, K.F.; Williamson, E.D.; Titball, R.W. Regions of Yersinia pestis V Antigen That Contribute to Protection against Plague Identified by Passive and Active Immunization. Infect. Immun. 1997, 65, 4476-4482. [CrossRef]
  231. Overheim, K.A.; DePaolo, R.W.; Debord, K.L.; Morrin, E.M.; Anderson, D.M.; Green, N.M.; Brubaker, R.R.; Jabri, B.; Schneewind, O. LcrV Plague Vaccine with Altered Immunomodulatory Properties. Infect. Immun. 2005, 73, 5152-5159. [CrossRef] [PubMed]
  232. Vernazza, C.; Lingard, B.; Flick-Smith, H.C.; Baillie, L.W.J.; Hill, J.; Atkins, H.S. Small Protective Fragments of the Yersinia pestis V Antigen. Vaccine 2009, 27, 2775-2780. [CrossRef]
  233. Sudheesh, P.S.; Al-Ghabshi, A.; Al-Mazrooei, N.; Al-Habsi, S. Comparative Pathogenomics of Bacteria Causing Infectious Diseases in Fish. Int. J. Evol. Biol. 2012, 2012, 457264. [CrossRef] [PubMed]
  234. Chukwu-Osazuwa, J.; Cao, T.; Vasquez, I.; Gnanagobal, H.; Hossain, A.; Machimbirike, V.I.; Santander, J. Comparative Reverse Vaccinology of Piscirickettsia salmonis, Aeromonas salmonicida, Yersinia ruckeri, Vibrio anguillarum and Moritella viscosa, Frequent Pathogens of Atlantic Salmon and Lumpfish Aquaculture. Vaccines 2022, 10, 473. [CrossRef]
  235. Yoshida, T.; Sakai, M.; Kitao, T.; Khlil, S.M.; Araki, S.; Saitoh, R.; Ineno, T.; Inglis, V. Immunomodulatory Effects of the Fermented Products of Chicken Egg, EF203, on Rainbow Trout, Oncorhynchus mykiss. Aquaculture 1993, 109, 207-214. [CrossRef]
  236. Sakai, M.; Yoshida, T.; Kobayashi, M. Influence of the Immunostimulant, EF203, on the Immune Responses of Rainbow Trout, Oncorhynchus mykiss, to Renibacterium salmoninarum. Aquaculture 1995, 138, 61-67. [CrossRef]