Use of genome editing methods to gain viral immunity in crops
2020
Abstract
Čeprav so rastlinski virusi pomemben del ekosistema, povzročajo izgubo pridelka in škodujejo kmetijskim rastlinam, ki so ključnega pomena za preživetje ljudi in živali. S klasičnimi in novejšimi metodami pridobivamo izboljšane lastnosti rastlin in spoznavamo mehanizme interakcij med gostiteljem in virusom. Z razvojem tehnik genomskega preurejanja kot je CRISPR/Cas sistem, so se odprle možnosti poseganja v genom in še boljšega razumevanja funkcij določenih genov in molekul. Namen dela je povzeti možnosti aplikacij CRISPR/Cas sistema za pridobitev odpornosti na DNA in RNA viruse v kmetijskih rastlinah. Rezultati študij kažejo, da je ta tehnika natančna in uspešna pri pridobitvi odpornosti na viruse kmetijskih rastlin kot so paradižnik, krompir, pšenica, ječmen, manioka, bananovec in pesa. Analize so pokazale, da stopnja odpornosti na viruse korelira s stopnjo izražanja sgRNA molekule in Cas proteina. Optimizacija postopkov je ključna za uspešen vnos CRISPR/Cas sistema in učinkovitost ...
References (67)
- VIRI Abudayyeh O. O., Gootenberg J. S., Essletzbichler P., Han S., Joung J., Belanto J. J., Verdine V., Cox D. B. T., Kellner M. J., Regev A., Lander E. S., Voytas D. F., Ting A. Y., Zhang F. 2017. RNA targeting with CRISPR-Cas13. Nature, 550, 7675: 280-284
- Agrios G. N. 1988. Plant pathology. 3rd ed. San Diego, Academic Press: 845 str.
- Ali Z., Abulfaraj A., Idris A., Ali S., Tashkandi M., Mahfouz M. M. 2015. CRISPR/Cas9- mediated viral interference in plants. Genome Biology, 16, 238, doi: 10.1186/s13059-015- 0799-6: 11 str.
- Aman R., Mahas A., Butt H., Ali Z., Aljedaani F., Mahfouz M. 2018. Engineering RNA virus interference via the CRISPR/Cas13 machinery in Arabidopsis. Viruses, 10, 12, 732, doi: 10.3390/v10120732: 9 str.
- Andersson M., Turesson H., Olsson N., Fält A. S., Ohlsson P., Gonzalez M. N., Samuelsson M., Hofvander P. 2018. Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiologia Plantarum, 164, 4: 378-384
- Baltes N. J., Hummel A. W., Konecna E., Cegan R., Bruns A. N., Bisaro D. M., Voytas D. F. 2015. Conferring resistance to geminiviruses with the CRISPR-Cas prokaryotic immune system. Nature Plants, 1, 15145, doi: 10.1038/nplants.2015.145: 4 str.
- Bernardo P., Charles-Dominique T., Barakat M., Ortet P., Fernandez E., Filloux D., Hartnady P., Rebelo T. A., Cousins S. R., Mesleard F., Cohez D., Yavercovski N., Varsani A., Harkins G. W., Peterschmitt M., Malmstrom C. M., Martin D. P., Roumagnac P. 2018. Geometagenomics illuminates the impact of agriculture on the distribution and prevalence of plant viruses at the ecosystem scale. The ISME Journal, 12, 1: 173-184
- Brault V., Uzest M., Monsion B., Jacquot E., Blanc S. 2010. Aphids as transport devices for plant viruses. Virology, 333, 6-7: 524-538
- Burgyán J., Havelda Z. 2011. Viral suppressors of RNA silencing. Trends in Plant Science, 16, 5: 265-272
- Chandrasekaran J., Brumin M., Wolf D., Leibman D., Klap C., Pearlsman M., Sherman A., Arazi T., Gal-On A. 2016. Development of broad virus resistance in nontransgenic cucumber using CRISPR/Cas9 technology, Molecular Plant Pathology, 17, 7: 1140-1153
- Bukvič, V. Uporaba metod preurejanja genoma za pridobitev odpornosti na viruse pri kmet. rastlinah Dipl. delo (UN). Ljubljana, Univ. v Ljubljani, Biotehniška fakulteta, Študij biotehnologije, 2020
- Cheng H., Yang H., Zhang D., Gai J., Yu D. 2010. Polymorphisms of soybean isoflavone synthase and flavanone 3-hydroxylase genes are associated with soybean mosaic virus resistance. Molecular Breeding, 25, 1: 13-24
- Choudhary N., Kumari P., Panda S. 2020. Chapter 14 -RNA plant viruses: biochemistri, replication and molecular genetics. V: Applied plant virology. 1st ed. Awasthi L. P. (ur.). Academic Press: 183-195
- Csorba T., Pantaleo V., Burgyán J. 2009. RNA silencing: an antiviral mechanism. Advances in Virus Research. 75: 35-71
- Das A., Sharma N., Prasad M. 2019. CRISPR/Cas9: a novel weapon in the arsenal to combat plant diseases. Frontiers in Plant Science, 9, 2008, doi: 10.3389/fpls.2018.02008: 8 str.
- Do Céu Teixeira M., Santini A., Souto E. B. 2017. Chapter 8 -Delivery of antimicrobials by chitosan-composed therapeutic nanostructures. V: Nanostructures for antimicrobial therapy. Ficai A., Grumezescu A. M. (ur.). Elsevier: 203-222
- Fuchs M., Moffer P., Caranta C. 2008. Plant resistance to viruses: Engineered resistance. V: Encyclopedia of virology. 3rd ed. Mahy B. W. J., Van Regenmortel H. V (ur.). Academic Press: 156-164
- Gomez M.A., Lin D., Moll T., Chauhan R. D., Hayden L., Renninger K., Beyene G., Taylor N. J., Carrington J. C., Staskawicz B. J., Bart R. S. 2018. Simultaneous CRISPR/Cas9-mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence. Plant Biotechnology Journal, 17, 2: 421-434
- Gootenberg J. S., Abudayyeh O. O., Lee J. W., Essletzbichler P., Dy A. J., Joung J., Verdine V., Donghia N., Daringer N. M., Freije C. A., Myhrvold C., Bhattacharyya R. P., Livny J., Regev A., Koonin E. V., Hung D. T., Sabeti P. C., Collins J. J., Zhang F. 2017. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science, 356, 6336: 438-442
- Hamada M., Sakilich A. L., Koduru S. B., Maraia R. J. 2000. Transcription termination by RNA polymerase III in fission yeast. A genetic and biochemically tractable model system. Journal of Biological Chemistry, 275: 29076-29081
- Harrington L. B., Burstein D., Chen J. S., Paez-Espino D., Ma E., Witte I. P., Cofsky J. C., Kyrpides N. C., Banfield J. F., Doudna J. A. 2018. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science, 362, 6416: 839-842
- Hill J. H. in Whitham S. A. 2014. Control of virus diseases in soybeans. V: Advances in virus research. Smith K. M. in Lauffer M. A. (ur.). New York, Academic Press, 90: 355-390
- Hull R. 2014. Replication of Plant Viruses. Plant virology, 341-421 International Commitee on Taxonomy of Viruses. 2012. Virus Taxonomy: classification and nomenclature of viruses: Ninth report of the international commitee on taxonomy of viruses.
- King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J. (ur.). San Diego, Elsevier Academic Press: 1-1327
- Ji X., Zhang H., Zhang Y., Wang Y., Gao C. 2015. Establishing CRISPR-Cas-like immune system conferring DNA viruses resistance in plants. Nature Plants, 1, 15144, doi: 10.1038/nplants.2015.144, 4 str.
- Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J. A., Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 6096: 816-821
- Kalinina N. O., Khromov A., Love A. J., Taliansky M. E. 2020. CRIPSR applications in plant virology: Virus resistance and beyond. Phytopathology, 110, 1: 18-28
- Kaya H., Ishibashi K., Toki S. 2017. A split Staphylococcus aureus Cas9 as a compact genome- editing tool in plants. Plant Cell Physiology, 58: 643-649
- Khan M. Z., Haider S., Mansoor S., Amin I. 2019. Targreting plant ssDNA viruses with engineered miniature CRISPR-Cas14a. Trends in Biotechnology, 37, 8: 800-804
- Khromov A. V., Makhotenko A. V., Snigir E. V., Makarova S. S., Makarov V. V., Suprunova T. P., Miroshnichenko D., Kalinina N. O., Dolgov S., Taliansky M. E. 2018. Delivery of CRISPR/Cas9 ribonucleoprotein complex to apical meristem cells for DNA-free editing of potato Solanum tuberosum genome. Biotekhnologiya (Biotechnology), 34, 6: 51-58
- Kis A., Hamar E., Tholt G., Bán R., Havelda Z. 2019. Creating highly efficient resistance against wheat dwarf virus in barley by employing CRISPR/Cas9 system. Plant Biotechnology Journal, 17, 6: 1004-1006
- Langner T., Kamoun S., Belhaj K. 2018. CRISPR crops: Plant genome editing towards disease resistance. Annual Review of Phytopathology, 56: 479-512
- Leopold P. L., Pfister K. K. 2006. Viral strategies for intracellular trafficking: motors and microtubules. Traffic. 7, 5: 516-523
- Lewsey M. G., Carr J. P. 2019. RNA Viruses: Plant Pathogenic. V: Encyclopedia of Microbiology. 4th ed. Schmidt T. M. (ur.). Academic Press: 178-193
- Ma H., Tu L. C., Naseri A., Huisman M., Zhang S., Grunwald D., Pederson T. 2016. Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nature Biotechnology, 34, 5: 528-530
- Ma J., Chen J., Wang M., Ren Y., Wang S., Lei C., Cheng Z. 2018. Disruption of OsSEC3A increases the content of salicylic acid and induces plant defense responses in rice. Journal of Experimental Botany, 69, 5: 1051-1064
- Makarova S. S., Khromov A. V., Spechenkova N. A., Taliansky M. E., Kalinina N. O. 2018. Application of the CRIPSR/Cas system for generation of pathogen resistant plants. Biochemistry, 83: 1552-1562
- Makhotenko A. V., Khromov A. V., Snigir E. A., Makarova S. S., Makarov V. V., Suprunova,T. P., Kalinina N. O., Taliansky M. E. 2019. Functional analysis of coilin in virus resistance and stress tolerance of potato Solanum tuberosum using CRISPR-Cas9 editing. Doklady Biochemistry Biophysics, 484, 1: 88-91
- Nagy P. D., Pogany J. 2012. The dependance of viral RNA replication on co-optedhost factors. Nature Reviews Microbiology, 10: 137-149
- Niehl A., Heinlein M. 2011. Cellular pathways for viral transport through plasmodesmata. Protoplasma, 248, 1: 75-99
- Bukvič, V. Uporaba metod preurejanja genoma za pridobitev odpornosti na viruse pri kmet. rastlinah Dipl. delo (UN). Ljubljana, Univ. v Ljubljani, Biotehniška fakulteta, Študij biotehnologije, 2020
- Pattanayak V., Lin S., Guilinger J. P., Ma E., Doudna J.A., Liu D. R. 2013. Highthroughput profiling of off target DNA cleavage reveals RNAprogrammed Cas9 nuclease specificity, Nature Biotechnology, 31: 839-843
- Ran Y., Liang Z., Gao C. 2017. Current and future editing reagent delivery systems for plant genome editing. Science China Life Science, 60, 5: 490-505
- Roossinck M. J. 2008. Symbiosis, mutualism and symbiogenesis. Plant Virus Evolution. Springer Berlin Heidelberg: 157-164
- Roossinck M. J. 2011. The good viruses: viral mutualistic symbioses. Nature Reviews Microbiology, 9, 2: 99-108
- Sampson T. R., Saroj S. D., Llewellyn A. C., Tzeng Y. L., Weiss D. S. 2013. A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature, 497, 7448: 254-257
- Shafiq M., Qurashi F., Mushtaq S., Hussain M., Hameed A., Haider M. S. 2020. Chapter 13 - DNA plant viruses: biochemistry, replication, and molecular genetics. V: Applied plant virology. 1st ed. Awasthi L. P. (ur.) Academic press: 169-182
- Swiss Institute of Bioinformatics. 2020a. Apoptosis modulation. ViralZone. https://viralzone.expasy.org/1581 (25. avg. 2020)
- Swiss Institute of BioInformatics. 2020b. Autophagy modulation. ViralZone. https://viralzone.expasy.org/1596 (25. avg. 2020)
- Swiss Institute of Bioinformatics. 2020c. dsDNA bidirectional replication. ViralZone. https://viralzone.expasy.org/1939 (25. avg. 2020)
- Swiss Institute of Bioinformatics. 2020d. Negative-stranded RNA virus replication. ViralZone. https://viralzone.expasy.org/1917 (25. avg. 2020)
- Swiss Institute of Bioinformatics. 2020e. PKR: dsRNA and stress sensor. ViralZone. https://viralzone.expasy.org/1576 (25. avg. 2020)
- Swiss Institute of Bioinformatics. 2020f. Positive stranded RNA virus replication. ViralZone. https://viralzone.expasy.org/1116 (25. avg. 2020)
- Tashkandi M., Ali Z., Alijedaani F., Shami A., Mahfouz M. M. 2018. Engineering resistance against Tomato yellow leaf virus via the CRISPR/Cas9 system in tomato. Plant Signaling and Behavior, 13, 10, doi: 10.1080/15592324.2018.1525996: 7 str.
- Toyota C. G., Davis M. D., Cosman A. M., Hebert M. D. 2010. Coilin phosphorylation mediates interaction with SMN and SmB'. Chromosoma, 119, 2: 205-215
- Tripathi J. N., Ntui V. O., Ron M., Muiruri S. K., Britt A., Tripathi L. 2019. CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a major challenge in banana breeding. Communications Biology, 2, 46, doi: 10.1038/s42003-019- 0288-7: 11 str.
- Whitfield A. E., Falk B. W., Rotenberg D. 2015. Insect vector-mediated transmission of plant viruses. Virology, 479-480: 278-289
- Whittaker G. R., Kann M., Helenius A. 2000. Viral entry into the nucleus. Annual Review of Cell and Developmental Biology, 16: 627-651
- Bukvič, V. Uporaba metod preurejanja genoma za pridobitev odpornosti na viruse pri kmet. rastlinah Dipl. delo (UN). Ljubljana, Univ. v Ljubljani, Biotehniška fakulteta, Študij biotehnologije, 2020
- Xu H., Pillai R. S., Azzouz T. N., Shpargel K. B., Kambach C., Hebert M. D., Schümperli D., Matera A. G. 2005. The C-terminal domain of coilin interacts with Sm proteins and U snRNPs. Chromosoma, 114, 3: 155-166
- Yang X. 2015. Applications of CRISPR-Cas9 mediated genome engineering. Military Medical Research, 2, 11, doi: 10.1186/s40779-015-0038-1: 6 str.
- Yu O., Shi J., Hession A.O., Maxwell C.A., McGonigle B., Odell J.T. 2003. Metabolic engineering to increase isoflavone biosynthesis in soybean seed. Phytochemistry, 63, 7: 753- 763
- Zhan, X., Zhang, F., Zhong, Z., Chen, R., Wang, Y., Chang, L., Bock, R., Nie, B., Zhang, J. 2019. Generation of virus resistant potato plants by RNA genome targeting. Plant Biotechnology Journal, 17, 9: 1814-1822
- Zhang P., Du H., Wang J., Pu Y., Yan R., Yang H., Cheng H., Yu D. 2020. Multiplex CRISPR/Cas9-mediated metabolic engineering increases soya bean isoflavone content and resistance to soya bean mosaic virus. Plant Biotechnology Journal, 18, 6: 1384-1395
- Zhang T., Zhao Y., Ye J., Cao X., Xu C., Chen B., An H., Jiao Y., Zhang F., Yang X., Zhou G. 2019. Establishing CRISP/Cas13a immune system conferring RNA virus resistance in both dicot and monocot plants. Plant Biotechnology Journal, 17, 7: 1185-1187
- Zhang T., Zheng Q., Yi X., An H., Zhao Y., Ma, S., Zhou G. 2018. Establishing RNA virus resistance in plants by harnessing CRISPR immune system. Plant Biotechnology Journal, 16, 8: 1451-1423
- Zhao Y., Yang X., Zhou G., Zhang T. 2020 Engineering plant virus resistance: from RNA silencing to genome editing strategies. Plant Biotechnology Journal, 18, 2: 328-336