Human-in-the-loop machine learning: a state of the art
Artificial Intelligence Review
https://doi.org/10.1007/S10462-022-10246-WAbstract
Researchers are defining new types of interactions between humans and machine learning algorithms generically called human-in-the-loop machine learning. Depending on who is in control of the learning process, we can identify: active learning, in which the system remains in control; interactive machine learning, in which there is a closer interaction between users and learning systems; and machine teaching, where human domain experts have control over the learning process. Aside from control, humans can also be involved in the learning process in other ways. In curriculum learning human domain experts try to impose some structure on the examples presented to improve the learning; in explainable AI the focus is on the ability of the model to explain to humans why a given solution was chosen. This collaboration between AI models and humans should not be limited only to the learning process; if we go further, we can see other terms that arise such as Usable and Useful AI. In this paper ...
References (169)
- Abdul A, Vermeulen J, Wang D et al (2018) Trends and trajectories for explainable, accountable and intel- ligible systems: an hci research agenda. In: Proceedings of the 2018 CHI conference on human factors in computing systems. Association for Computing Machinery, New York, NY, USA, CHI '18, pp 1-18, https:// doi. org/ 10. 1145/ 31735 74. 31741 56
- Abiteboul S, Buneman P, Suciu D (2000) Data on the web: from relations to semistructured data and XML. Morgan Kaufmann, Data Management Systems Series
- Adadi A, Berrada M (2018) Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 6:52,138-52,160. https:// doi. org/ 10. 1109/ ACCESS. 2018. 28700 52
- Aggarwal CC, Kong X, Gu Q et al (2014) Active learning: a survey. Data classification: algorithms and applications. Chapman and Hall/CRC, Boca Raton, pp 599-634
- Amazon (2022) Amazon mechanical turk. https:// www. mturk. com/. Accessed on 23 Mar 2022
- Amershi S, Cakmak M, Knox WB et al (2014) Power to the people: the role of humans in interactive machine learning. AI Magazine 35(4):105-120. https:// doi. org/ 10. 1609/ aimag. v35i4. 2513
- Angluin D (1987) Learning regular sets from queries and counterexamples. Inf Comput 75(2):87-106. https:// doi. org/ 10. 1016/ 0890-5401(87) 90052-6
- Arras GL, Montavon, Müller KR, Samek W (2017) Explaining recurrent neural network predictions in sen- timent analysis. In: EMNLP'17 workshop on computational approaches to subjectivity, sentiment and social media analysis, https:// doi. org/ 10. 18653/ v1/ W17-5221
- Barakat NH, Bradley AP (2007) Rule extraction from support vector machines: a sequential covering approach. IEEE Trans Knowl Data Eng 19(6):729-741. https:// doi. org/ 10. 1109/ TKDE. 2007. 190610
- Barredo Arrieta A, Díaz-Rodríguez N, Del Ser J et al (2020) Explainable artificial intelligence (xai): con- cepts, taxonomies, opportunities and challenges toward responsible AI. Inf Fusion 58:82-115. https:// doi. org/ 10. 1016/j. inffus. 2019. 12. 012
- Bau D, Zhou B, Khosla A et al (2017) Network dissection: Quantifying interpretability of deep visual rep- resentations. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR), 3319- 3327, https:// doi. org/ 10. 1109/ CVPR. 2017. 354, https:// ieeex plore. ieee. org/ docum ent/ 80998 37
- Begeja L, Renger B, Gibbon D et al (2004) Interactive machine learning techniques for improving SLU models. In: Proceedings of the HLT-NAACL 2004 workshop on spoken language understanding for conversational systems and higher level linguistic information for speech processing. Association for Computational Linguistics, Boston, Massachusetts, USA, 10-16, https:// aclan tholo gy. org/ W04-3003
- Bengio Y, Louradour J, Collobert R et al (2009) Curriculum learning. In: Proceedings of the 26th annual international conference on machine learning. Association for Computing Machinery, New York, NY, USA, ICML '09, 41-48, https:// doi. org/ 10. 1145/ 15533 74. 15533 80
- Bennetot A, Laurent JL, Chatila R et al (2019) Towards explainable neural-symbolic visual reasoning. arxiv: 1909. 09065
- Berg S, Kutra D, Kroeger T et al (2019) Ilastik: interactive machine learning for (bio)image analysis. Nat Methods 16(12):1226-1232. https:// doi. org/ 10. 1038/ s41592-019-0582-9
- Berghel H (1997) Cyberspace 2000: dealing with information overload. Commun ACM 40(2):19-24. https:// doi. org/ 10. 1145/ 253671. 253680
- Blumberg R, Atre S (2003) The problem with unstructured data. DM Rev 13(42-49):62
- Bonwell CC, Eison JA (1991) Active learning: creating excitement in the classroom. 1991 ASHE-ERIC higher education reports. ERIC Clearinghouse on Higher Education, The George Washington Univer- sity, One Dupont Circle, Suite 630, Washington, DC 20036-1183
- Boukhelifa N, Bezerianos A, Lutton E (2018) Evaluation of interactive machine learning systems. In: Zhou J, Chen F (eds) Human and machine learning: visible, explainable, trustworthy and transparent. Springer, Cham, pp 341-360
- Budd S, Robinson EC, Kainz B (2021) A survey on active learning and human-in-the-loop deep learning for medical image analysis. Med Image Anal 71(102):062. https:// doi. org/ 10. 1016/j. media. 2021. 102062
- Carlson G (2015) What eactly is complex data? https:// www. ayasdi. com/ exact ly-compl ex-data/. Accessed on 04 Mar 2021
- Castle E (2017) 7 signs you're dealing with complex data. https:// www. sisen se. com/ blog/7-signs-youre- deali ng-with-compl ex-data/. Accessed on 04 Mar 2022
- Che Z, Purushotham S, Khemani R et al (2015) Distilling knowledge from deep networks with applica- tions to healthcare domain. arXiv e-prints arxiv: 1512. 03542 [stat.ML]
- Che Z, Purushotham S, Khemani R et al (2017) Interpretable deep models for ICU outcome prediction. In: AMIA annual symposium proceedings, 371-380, https:// pubmed. ncbi. nlm. nih. gov/ 28269 832/ Chen Z, Li J, Wei L (2007) A multiple kernel support vector machine scheme for feature selection and rule extraction from gene expression data of cancer tissue. Artif Intell Med 41(2):161-175. https:// doi. org/ 10. 1016/j. artmed. 2007. 07. 008
- Chen Y, Singla A, Aodha OM et al (2018) Understanding the role of adaptivity in machine teaching: The case of version space learners. In: Proceedings of the 32nd international conference on neural information processing systems. Curran Associates Inc., Red Hook, NY, USA, NIPS'18, 1483- 1493, https:// dl. acm. org/ doi/ abs/ 10. 5555/ 33269 43. 33270 79
- Choi E, Bahadori T, Schuetz A et al (2016) Retain: Interpretable predictive model in healthcare using reverse time attention mechanism. In: Proceedings of the 30th international conference on neural information processing systems. Curran Associates Inc., Red Hook, NY, USA, NIPS'16, 3512-3520
- Churchill EF, van Allen P, Kuniavsky M (2018) Designing AI. Interactions 25(6):34-37. https:// doi. org/ 10. 1145/ 32817 64
- Cirik V, Hovy E, Morency LP (2016) Visualizing and understanding curriculum learning for long short- term memory networks. arXiv e-prints arxiv: 1611. 06204 [cs.CL]
- Cohn D, Atlas L, Ladner R (1994) Improving generalization with active learning. Mach Learn 15(2):201-221. https:// doi. org/ 10. 1007/ BF009 93277
- Cohn DA, Ghahramani Z, Jordan MI (1996) Active learning with statistical models. J Artif Intell Res 4(1):129-145. https:// doi. org/ 10. 5555/ 16227 37. 16227 44
- d'Avila Garcez A, Gori M, Lamb LC et al (2019) Neural-symbolic computing: an effective methodology for principled integration of machine learning and reasoning. arXiv e-prints arxiv: 1905. 06088 [cs.AI]
- Das A, Rad P (2020) Opportunities and challenges in explainable artificial intelligence (XAI): a survey. arXiv e-prints arxiv: 2006. 11371 [cs.CV]
- De Angeli K, Gao S, Alawad M et al (2021) Deep active learning for classifying cancer pathology reports. BMC Bioinform 22(1):1-25
- Devidze R, Mansouri F, Haug L et al (2020) Understanding the power and limitations of teaching with imperfect knowledge. In: Bessiere C (ed) Proceedings of the twenty-ninth international joint con- ference on artificial intelligence, IJCAI-20. International Joint Conferences on Artificial Intelli- gence Organization, 2647-2654, https:// doi. org/ 10. 24963/ ijcai. 2020/ 367
- Diamant E (2009) Machine learning: When and where the horses went astray? In: Zhang Y (ed) Machine learning. InTech, London, pp 1-18. https:// doi. org/ 10. 5772/ 9156
- Diamant E (2006) Learning to understand image content: Machine learning versus machine teaching alternative. In: 2006 International conference on information technology: research and education, 26-29, https:// doi. org/ 10. 1109/ ITRE. 2006. 381526
- Donadello I, Kessler F, Dragoni M et al (2019) Persuasive explanation of reasoning inferences on die- tary data. In: Joint proceedings of the 6th international workshop on dataset profilling and search and the 1st workshop on semantic explainability co-located with the 18th international semantic web conference (ISWC 2019)
- Donmez P, Carbonell JG (2008) Proactive learning: Cost-sensitive active learning with multiple imper- fect oracles. In: Proceedings of the 17th ACM conference on information and knowledge manage- ment. Association for Computing Machinery, New York, NY, USA, CIKM '08, 619-628, https:// doi. org/ 10. 1145/ 14580 82. 14581 65
- Dudley JJ, Kristensson PO (2018) A review of user interface design for interactive machine learning. ACM Trans Interact Intell Syst. https:// doi. org/ 10. 1145/ 31855 17
- El-Hasnony IM, Elzeki OM, Alshehri A et al (2022) Multi-label active learning-based machine learning model for heart disease prediction. Sensors. https:// doi. org/ 10. 3390/ s2203 1184
- Elman JL (1993) Learning and development in neural networks: the importance of starting small. Cogni- tion 48(1):71-99. https:// doi. org/ 10. 1016/ 0010-0277(93) 90058-4
- Fadhil A, Wang Y (2018) Towards automatic & personalised mobile health interventions: an interactive machine learning perspective. arXiv e-prints arxiv: 1803. 01842 [cs.CY]
- Fails JA, Olsen DR (2003) Interactive machine learning. In: Proceedings of the 8th international confer- ence on intelligent user interfaces. Association for Computing Machinery, New York, NY, USA, IUI '03, 39-45, https:// doi. org/ 10. 1145/ 604045. 604056
- Fiebrink RA (2011) Real-time human interaction with supervised learning algorithms for music compo- sition and performance. PhD thesis, Computer Science Dept. Princeton University, Princeton, NJ, USA, https:// dl. acm. org/ doi/ book/ 10. 5555/ 21257 76
- Fiebrink R, Cook PR (2010) The wekinator: a system for real-time, interactive machine learning in music. In: Proceedings of The Eleventh International Society for Music Information Retrieval Conference (ISMIR 2010), Utrecht
- Fiebrink R, Cook PR, Trueman D (2011) Human model evaluation in interactive supervised learning. In: Proceedings of the SIGCHI conference on human factors in computing systems. Association for Computing Machinery, New York, NY, USA, CHI '11, 147-156, https:// doi. org/ 10. 1145/ 19789 42. 19789 65
- Florensa C, Held D, Wulfmeier M et al (2017) Reverse curriculum generation for reinforcement learn- ing. In: Levine S, Vanhoucke V, Goldberg K (eds) Proceedings of the 1st annual conference on robot learning, proceedings of machine learning research, vol 78. PMLR, 482-495, http:// proce edings. mlr. press/ v78/ flore nsa17a. html
- Fogarty J, Tan D, Kapoor A et al (2008) Cueflik: Interactive concept learning in image search. In: Pro- ceedings of the SIGCHI conference on human factors in computing systems. Association for Com- puting Machinery, New York, NY, USA, CHI '08, 29-38, https:// doi. org/ 10. 1145/ 13570 54. 13570 61
- Gaonkar B, Shinohara TR, Davatzikos C (2015) Interpreting support vector machine models for multi- variate group wise analysis in neuroimaging. Med Image Anal 24(1):190-204. https:// doi. org/ 10. 1016/j. media. 2015. 06. 008
- Goodman B, Flaxman S (2017) European union regulations on algorithmic decision-making and a "right to explanation." AI Mag 38(3):50-57. https:// doi. org/ 10. 1609/ aimag. v38i3. 2741
- Gunning D (2017) Explainable artificial intelligence (xAI). Tech. rep., Defense Advanced Research Pro- jects Agency (DARPA), https:// www. darpa. mil/ progr am/ expla inable-artifi cial-intel ligen ce
- Hacohen G, Weinshall D (2019) On the power of curriculum learning in training deep networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th international conference on machine learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, Proceedings of Machine Learning Research, vol 97. PMLR, 2535-2544, http:// proce edings. mlr. press/ v97/ hacoh en19a. html
- Hara S, Hayashi K (2018) Making tree ensembles interpretable: A bayesian model selection approach. In: Storkey A, Perez-Cruz F (eds) Proceedings of the twenty-first international conference on arti- ficial intelligence and statistics, proceedings of machine learning research, vol 84. PMLR, 77-85, https:// proce edings. mlr. press/ v84/ hara1 8a. html
- He X, Zhao K, Chu X (2021) AutoML: a survey of the state-of-the-art. Knowl Based Syst 212(106):622. https:// doi. org/ 10. 1016/j. knosys. 2020. 106622
- Heimerl F, Koch S, Bosch H et al (2012) Visual classifier training for text document retrieval. IEEE Trans Vis Comput Graphics 18(12):2839-2848. https:// doi. org/ 10. 1109/ TVCG. 2012. 277
- Hills TT, Todd PM, Lazer D et al (2015) Exploration versus exploitation in space, mind, and society. Trends Cogn Sci 19(1):46-54. https:// doi. org/ 10. 1016/j. tics. 2014. 10. 004
- Hipke K, Toomim M, Fiebrink R et al (2014) Beatbox: End-user interactive definition and training of recognizers for percussive vocalizations. In: Proceedings of the 2014 international working con- ference on advanced visual interfaces. Association for Computing Machinery, New York, NY, USA, AVI '14, 121-124, https:// doi. org/ 10. 1145/ 25981 53. 25981 89
- Hoi SCH, Jin R, Zhu J et al (2006) Batch mode active learning and its application to medical image classification. In: Proceedings of the 23rd international conference on machine learning. Associa- tion for Computing Machinery, New York, NY, USA, ICML '06, 417-424, https:// doi. org/ 10. 1145/ 11438 44. 11438 97
- Holmberg L, Davidsson P, Linde P (2020) A feature space focus in machine teaching. In: 2020 IEEE international conference on pervasive computing and communications workshops (PerCom Work- shops), 1-2, https:// doi. org/ 10. 1109/ PerCo mWork shops 48775. 2020. 91561 75
- Holzinger A (2016) Interactive machine learning for health informatics: when do we need the human-in- the-loop? Brain Inform 3(2):119-131. https:// doi. org/ 10. 1007/ s40708-016-0042-6
- Holzinger A, Jurisica I (2014) Knowledge discovery and data mining in biomedical informatics: the future is in integrative, interactive machine learning solutions. In: Holzinger A, Jurisica I (eds) Interactive knowledge discovery and data mining in biomedical informatics: state-of- the-art and future challenges. Springer, Berlin, Heidelberg, pp 1-18. https:// doi. org/ 10. 1007/ 978-3-662-43968-5_1
- Holzinger A, Plass M, Kickmeier-Rust M et al (2019) Interactive machine learning: experimental evi- dence for the human in the algorithmic loop. Appl Intell 49(7):2401-2414. https:// doi. org/ 10. 1007/ s10489-018-1361-5
- Holzinger A, Biemann C, Pattichis CS, et al (2017) What do we need to build explainable AI systems for the medical domain? arXiv e-prints arxiv: 1712. 09923 [cs.AI]
- Ionescu RT, Alexe B, Leordeanu M et al (2016) How hard can it be? estimating the difficulty of visual search in an image. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp 2157-2166, https:// doi. org/ 10. 1109/ CVPR. 2016. 237
- Ishibashi T, Nakao Y, Sugano Y (2020) Investigating audio data visualization for interactive sound recogni- tion. In: Proceedings of the 25th international conference on intelligent user interfaces. Association for Computing Machinery, New York, NY, USA, IUI '20, 67-77, https:// doi. org/ 10. 1145/ 33773 25. 33774 83
- Jamieson KG, Jain L, Fernandez C et al (2015) Next: a system for real-world development, evaluation, and application of active learning. In: Cortes C, Lawrence N, Lee D et al (eds) Advances in neural infor- mation processing systems, vol 28. Curran Associates Inc, Red Hook Jiang L, Meng D, Zhao Q et al (2015) Self-paced curriculum learning. In: Proceedings of the twenty-ninth AAAI conference on artificial intelligence. AAAI Press, AAAI'15, 2694-2700, https:// doi. org/ 10. 5555/ 28865 21. 28866 96
- Jiang L, Liu S, Chen C (2019) Recent research advances on interactive machine learning. J Vis 22(2):401- 417. https:// doi. org/ 10. 1007/ s12650-018-0531-1
- Johns E, Mac Aodha O, Brostow GJ (2015) Becoming the expert-interactive multi-class machine teach- ing. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2616-2624, https:// doi. org/ 10. 1109/ CVPR. 2015. 72988 77
- Kabra M, Robie AA, Rivera-Alba M et al (2013) Jaaba: interactive machine learning for automatic annota- tion of animal behavior. Nat Methods 10(1):64-67. https:// doi. org/ 10. 1038/ nmeth. 2281
- Kapoor A, Lee B, Tan D et al (2010) Interactive optimization for steering machine classification. In: Pro- ceedings of the SIGCHI conference on human factors in computing systems. Association for Comput- ing Machinery, New York, NY, USA, CHI '10, 1343-1352, https:// doi. org/ 10. 1145/ 17533 26. 17535 29
- Kellenberger B, Tuia D, Morris D (2020) Aide: accelerating image-based ecological surveys with inter- active machine learning. Methods Ecol Evol 11(12):1716-1727. https:// doi. org/ 10. 1111/ 2041-210X. 13489
- Kim B, Patel K, Rostamizadeh A et al (2015) Scalable and interpretable data representation for high-dimen- sional, complex data. In: Proceedings of the twenty-ninth AAAI conference on artificial intelligence, Association for the Advancement of Artificial Intelligence (AAAI), Austin, Texas USA, 1763-1769, https:// ojs. aaai. org/ index. php/ AAAI/ artic le/ view/ 9474
- Koesten L, Simperl E (2021) Ux of data: making data available doesn't make it usable. Interactions 28(2):97-99. https:// doi. org/ 10. 1145/ 34488 88
- Kosmyna N, Tarpin-Bernard F, Rivet B (2015) Adding human learning in brain-computer interfaces (bcis): towards a practical control modality. ACM Trans Comput-Hum Interact. https:// doi. org/ 10. 1145/ 27231 62
- Krakovna V, Doshi-Velez F (2016) Increasing the interpretability of recurrent neural networks using hidden markov models. arXiv e-prints arxiv: 1606. 0532 [cond-mat.soft]
- Kumar M, Packer B, Koller D (2010) Self-paced learning for latent variable models. In: Lafferty J, Williams C, Shawe-Taylor J et al (eds) Advances in neural information processing systems. Curran Associates Inc, Red Hook, pp 1189-1197
- Kumar G, Foster G, Cherry C et al (2019) Reinforcement learning based curriculum optimization for neu- ral machine translation. In: Proceedings of the 2019 conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota, 2054-2061, https:// doi. org/ 10. 18653/ v1/ N19-1208, https:// www. aclweb. org/ antho logy/ N19-1208
- Laws F, Scheible C, Schütze H (2011) Active Learning with Amazon Mechanical Turk. In: Proceedings of the conference on empirical methods in natural language processing. Association for Computational Linguistics, USA, EMNLP '11, 1546-1556, https:// doi. org/ 10. 5555/ 21454 32. 21455 97
- LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436-444. https:// doi. org/ 10. 1038/ natur e14539
- Leslie D (2019) Understanding artificial intelligence ethics and safety: A guide for the responsible design and implementation of ai systems in the public sector. 10.5281/zenodo.3240529
- Lindvall M, Molin J, Löwgren J (2018) From machine learning to machine teaching: the importance of UX. Interactions 25(6):52-57. https:// doi. org/ 10. 1145/ 32828 60
- Lipton ZC (2018) The mythos of model interpretability: in machine learning, the concept of interpret- ability is both important and slippery. Queue 16(3):31-57. https:// doi. org/ 10. 1145/ 32363 86. 32413 40
- Liu W, Dai B, Humayun A et al (2017) Iterative machine teaching. In: Precup D, Teh YW (eds) Proceed- ings of the 34th international conference on machine learning, proceedings of machine learning research, vol 70. PMLR, 2149-2158, https:// proce edings. mlr. press/ v70/ liu17b. html
- Liu C, He S, Liu K et al (2018a) Curriculum learning for natural answer generation. In: Proceedings of the 27th international joint conference on artificial intelligence. AAAI Press, IJCAI'18, 4223- 4229, https:// doi. org/ 10. 24963/ ijcai. 2018/ 587
- Liu J, Lichtenberg T, Hoadley KA et al (2018b) An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell 173(2):400-416.e11. https:// doi. org/ 10. 1016/j. cell. 2018. 02. 052
- Liu W, Dai B, Li X et al (2018c) Towards black-box iterative machine teaching. In: Dy J, Krause A (eds) Proceedings of the 35th international conference on machine learning, proceedings of machine learning research, vol 80. PMLR, 3141-3149, https:// proce edings. mlr. press/ v80/ liu18b. html
- Liu Z, Feng X, Wang Y et al (2021) Self-paced learning enhanced neural matrix factorization for noise- aware recommendation. Knowl Based Syst 213(106):660. https:// doi. org/ 10. 1016/j. knosys. 2020. 106660
- Lopes M, Melo F, Montesano L (2009) Active learning for reward estimation in inverse reinforcement learning. Joint European conference on machine learning and knowledge discovery in databases. Springer, Berlin Heidelberg, pp 31-46
- Loyola-González O (2019) Black-box vs. white-box: understanding their advantages and weaknesses from a practical point of view. IEEE Access 7:154096-154113. https:// doi. org/ 10. 1109/ ACCESS. 2019. 29492 86
- Luo T, Kramer K, Samson S et al (2004) Active learning to recognize multiple types of plankton. In: Proceedings of the 17th international conference on pattern recognition, 2004. ICPR 2004., 478- 481 Vol.3, https:// doi. org/ 10. 1109/ ICPR. 2004. 13345 70
- Mahendran A, Vedaldi A (2015) Understanding deep image representations by inverting them. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR), 5188-5196, https:// doi. org/ 10. 1109/ CVPR. 2015. 72991 55, https:// ieeex plore. ieee. org/ docum ent/ 72991 55
- Matiisen T, Oliver A, Cohen T et al (2020) Teacher-student curriculum learning. IEEE Trans Neural Netw Learn Syst 31(9):3732-3740. https:// doi. org/ 10. 1109/ TNNLS. 2019. 29349 06
- Mei S, Zhu X (2015) Using machine teaching to identify optimal training-set attacks on machine learn- ers. In: Proc. of the 29th AAAI conference on artificial intelligence, 2871-2877, https:// ojs. aaai. org/ index. php/ AAAI/ artic le/ view/ 9569
- Meske C, Bunde E, Schneider J et al (2022) Explainable artificial intelligence: objectives, stakeholders, and future research opportunities. Inf Syst Manag 39(1):53-63. https:// doi. org/ 10. 1080/ 10580 530. 2020. 18494 65
- Meza Martínez MA, Nadj M, Maedche A (2019) Towards an integrative theoretical framework of inter- active machine learning systems. In: Proceedings of the 27th European conference on information systems (ECIS), Stockholm & Uppsala, Sweden, https:// aisel. aisnet. org/ ecis2 019_ rp/ 172
- Michael CJ, Acklin D, Scheuerman J (2020) On interactive machine learning and the potential of cogni- tive feedback. arXiv e-prints arxiv: 2003. 10365 [cs.HC]
- Microsoft (2022) Qna maker. https:// www. qnama ker. ai/. Accessed on 23 Mar 2022
- Minh D, Wang HX, Li YF et al (2021) Explainable artificial intelligence: a comprehensive review. Artif Intell Rev. https:// doi. org/ 10. 1007/ s10462-021-10088-y
- Montavon G, Lapuschkin S, Binder A et al (2017) Explaining nonlinear classification decisions with deep Taylor decomposition. Pattern Recognit 65:211-222. https:// doi. org/ 10. 1016/j. patcog. 2016. 11. 008
- Mosqueira-Rey E, Alonso-Ríos D, Baamonde-Lozano A (2021) Integrating iterative machine teaching and active learning into the machine learning loop. Procedia Comput Sci 192:553-562. https:// doi. org/ 10. 1016/j. procs. 2021. 08. 057
- Mosqueira-Rey E, Hernández-Pereira E, Alonso-Ríos D et al (2022) A classification and review of tools for developing and interacting with machine learning systems. In: Proceedings of the 37th annual ACM symposium on applied computing. Association for Computing Machinery, New York, NY, USA, 1083-1092, https:// doi. org/ 10. 1145/ 34773 14. 35073 10
- Muir BM (1987) Trust between humans and machines, and the design of decision aids. Int J Man-Mach Stud 27(5):527-539. https:// doi. org/ 10. 1016/ S0020-7373(87) 80013-5
- Munro R (2020) Human-in-the-loop machine learning. Manning Publications, Shelter Island Nguyen DHM, Patrick JD (2014) Supervised machine learning and active learning in classification of radi- ology reports. J Am Med Inform Assoc 21(5):893-901. https:// doi. org/ 10. 1136/ amiaj nl-2013-002516
- Nguyen A, Dosovitskiy A, Yosinski J et al (2016) Synthesizing the preferred inputs for neurons in neural networks via deep generator networks. In: Proceedings of the 30th international conference on neural information processing systems. Curran Associates Inc., Red Hook, NY, USA, NIPS'16, 3395-3403, https:// doi. org/ 10. 5555/ 31573 82. 31574 77
- Nwana HS (1990) Intelligent tutoring systems: an overview. Artif Intell Rev 4(4):251-277. https:// doi. org/ 10. 1007/ BF001 68958
- Olsson F (2009) A literature survey of active machine learning in the context of natural language process- ing. Tech. rep., Swedish Institute of Computer Science, http:// urn. kb. se/ resol ve? urn= urn: nbn: se: ri: diva-23510
- O'Malley J (2018) Captcha if you can: how you've been training ai for years without realising it. https:// www. techr adar. com/ news/ captc ha-if-you-can-how-youve-been-train ing-ai-for-years-witho ut-reali sing-it Peng B, Li C, Li J et al (2021) Soloist: building task bots at scale with transfer learning and machine teach- ing. Trans Assoc Comput Linguist 9:807-824. https:// doi. org/ 10. 1162/ tacl_a_ 00399
- Penha G, Hauff C (2020) Curriculum learning strategies for IR. In: Jose JM, Yilmaz E, Magalhães J et al (eds) European conference on information retrieval: advances in information retrieval. Springer, Cham, pp 699-713. https:// doi. org/ 10. 1007/ 978-3-030-45439-5_ 46
- Platanios EA, Stretcu O, Neubig G et al (2019) Competence-based curriculum learning for neural machine translation. In: Proceedings of the 2019 conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota, pp 1162-1172, https:// doi. org/ 10. 18653/ v1/ N19-1119, https:// www. aclweb. org/ antho logy/ N19-1119
- Porter R, Theiler J, Hush D (2013) Interactive machine learning in data exploitation. Comput Sci Eng 15(5):12-20. https:// doi. org/ 10. 1109/ MCSE. 2013. 74
- Ramos G, Meek C, Simard P et al (2020) Interactive machine teaching: a human-centered approach to building machine-learned models. Hum Comput Interact 35(5-6):413-451. https:// doi. org/ 10. 1080/ 07370 024. 2020. 17349 31
- Reyes O, Pérez E, del Carmen Rodrıguez-Hernández M et al (2016) Jclal: a java framework for active learn- ing. J Mach Learn Res 17:1-5
- Ribeiro M, Grolinger K, Capretz MA (2015) MLaaS: Machine learning as a service. In: 2015 IEEE 14th international conference on machine learning and applications (ICMLA), 896-902, https:// doi. org/ 10. 1109/ ICMLA. 2015. 152
- Rubens N, Elahi M, Sugiyama M et al (2015) Active learning in recommender systems. In: Ricci F, Rokach L, Shapira B (eds) Recommender systems handbook. Springer, Boston, pp 809-846
- Rusu O, Halcu I, Grigoriu O et al (2013) Converting unstructured and semi-structured data into knowledge. In: 013 11th RoEduNet international conference, 1-4, https:// doi. org/ 10. 1109/ RoEdu Net. 2013. 65117 36
- Sammut C, Banerji RB (1986) Learning concepts by asking questions. In: Michalski RS, Carbonell J, Mitchell T (eds) Machine learning: an artificial intelligence approach, vol 2. Morgan Kaufmann, Burlington, pp 167-192
- Šavelka J, Trivedi G, Ashley KD (2015) Applying an interactive machine learning approach to statutory analysis. In: Rotolo A (ed) Legal knowledge and information systems, frontiers in artificial intel- ligence and applications, vol 279. IOS Press, Amsterdam, pp 101-110. https:// doi. org/ 10. 3233/ 978-1-61499-609-5-101
- Selvaraju RR, Cogswell M, Das A et al (2017) Grad-cam: Visual explanations from deep networks via gra- dient-based localization. In: 2017 IEEE international conference on computer vision (ICCV), 618- 626, https:// doi. org/ 10. 1109/ ICCV. 2017. 74, https:// ieeex plore. ieee. org/ docum ent/ 82373 36
- Sena A, Howard M (2020) Quantifying teaching behavior in robot learning from demonstration. Int J Robot Res 39(1):54-72. https:// doi. org/ 10. 1177/ 02783 64919 884623
- Sena A, Zhao Y, Howard MJ (2018) Teaching human teachers to teach robot learners. In: 2018 IEEE inter- national conference on robotics and automation (ICRA), 5675-5681, https:// doi. org/ 10. 1109/ ICRA. 2018. 84611 94
- Settles B (2009) Active learning literature survey. Tech. rep., University of Wisconsin-Madison. Department of Computer Sciences, https:// minds. wisco nsin. edu/ handle/ 1793/ 60660
- Settles B (2011) From theories to queries: Active learning in practice. In: Guyon I, Cawley G, Dror G et al (eds) Active learning and experimental design workshop In conjunction with AISTATS 2010, pro- ceedings of machine learning research, vol 16. JMLR workshop and conference proceedings, Sar- dinia, Italy, 1-18, http:// proce edings. mlr. press/ v16/ settl es11a. html
- Shneiderman B (2020) Human-centered artificial intelligence: reliable, safe & trustworthy. Int J Hum Com- put Interact 36(6):495-504. https:// doi. org/ 10. 1080/ 10447 318. 2020. 17411 18
- Simard PY, Amershi S, Chickering DM et al (2017) Machine teaching: A new paradigm for building machine learning systems. arXiv e-prints arxiv: 1707. 06742
- Singla A, Bogunovic I, Bartók G et al (2014) Near-optimally teaching the crowd to classify. In: Xing EP, Jebara T (eds) Proceedings of the 31st international conference on machine learning. PMLR, Bejing, China, proceedings of machine learning research, 154-162, http:// proce edings. mlr. press/ v32/ singl a14. pdf
- Sint R, Schaffert S, Stroka S et al (2009) Combining unstructured, fully structured and semi-structured information in semantic wikis. In: 4th semantic wiki workshop (SemWiki 2009) at the 6th Euro- pean semantic web conference (ESWC 2009), Hersonissos, Greece, 73-87, http:// ceur-ws. org/ Vol- 464/ paper-14. pdf
- Smith JS, Nebgen B, Lubbers N et al (2018) Less is more: sampling chemical space with active learning. J Chem Phys 148(24):241,733
- Soviany P, Ardei C, Ionescu RT et al (2020) Image difficulty curriculum for generative adversarial net- works (cugan). In: 2020 IEEE winter conference on applications of computer vision (WACV), 3452-3461, https:// doi. org/ 10. 1109/ WACV4 5572. 2020. 90934 08
- Spitkovsky VI, Alshawi H, Jurafsky D (2010) From baby steps to leapfrog: How "less is more" in unsu- pervised dependency parsing. In: Human language technologies: the 2010 annual conference of the North American Chapter of the Association for Computational Linguistics. Association for Computational Linguistics, Los Angeles, California, 751-759, https:// www. aclweb. org/ antho logy/ N10-1116
- Suh J, Ghorashi S, Ramos G et al (2019) Anchorviz: facilitating semantic data exploration and con- cept discovery for interactive machine learning. ACM Trans Interact Intell Syst. https:// doi. org/ 10. 1145/ 32413 79
- Talbot J, Lee B, Kapoor A et al (2009) Ensemblematrix: Interactive visualization to support machine learning with multiple classifiers. In: Proceedings of the SIGCHI conference on human factors in computing systems. Association for Computing Machinery, New York, NY, USA, CHI '09, 1283- 1292, https:// doi. org/ 10. 1145/ 15187 01. 15188 95
- Tang YP, Li GX, Huang SJ (2019) ALiPy: Active learning in python. Tech. rep., Nanjing University of Aeronautics and Astronautics, https:// github. com/ NUAA-AL/ ALiPy, available as arXiv preprint arxiv: 1901. 03802
- Teso S, Kersting K (2019) Explanatory interactive machine learning. In: Proceedings of the 2019 AAAI/ ACM Conference on AI, Ethics, and Society. Association for Computing Machinery, New York, NY, USA, AIES '19, 239-245, https:// doi. org/ 10. 1145/ 33066 18. 33142 93
- Tolls V (2018) An event-based approach to modeling complex data in critical care. PhD thesis, Queen's University (Canada), https:// qspace. libra ry. queen su. ca/ bitst ream/ handle/ 1974/ 24489/ Tolls_ Victo ria_J_ 201809_ MSC. pdf
- Tomczak K, Czerwińska P, Wiznerowicz M (2015) The cancer genome atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol 19(1A):68-77. https:// doi. org/ 10. 5114/ wo. 2014. 47136
- Treveil M, Omont N, Stenac C et al (2020) Introducing MLOps. O'Reilly Media, Sebastopol Traoré R, Caselles-Dupré ea (2019) Discorl: continual reinforcement learning via policy distillation. arXiv e-prints arxiv: 1907. 05855 [cs.LG]
- Valiant LG (1984) A theory of the learnable. Commun ACM 27(11):1134-1142. https:// doi. org/ 10. 1145/ 1968. 1972
- van Allen P (2018) Prototyping ways of prototyping AI. Interactions 25(6):46-51. https:// doi. org/ 10. 1145/ 32745 66
- von Ahn L, Dabbish L (2004) Labeling images with a computer game. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM, New York, NY, USA, CHI '04, 319- 326, https:// doi. org/ 10. 1145/ 985692. 985733
- von Ahn L, Blum M, Langford J (2004) Telling humans and computers apart automatically. Commun ACM 47(2):56-60. https:// doi. org/ 10. 1145/ 966389. 966390
- Visi FG, Tanaka A (2021) Interactive machine learning of musical gesture. In: Miranda ER (ed) Hand- book of artificial intelligence for music: foundations, advanced approaches, and developments for creativity. Springer, Cham, pp 771-798. https:// doi. org/ 10. 1007/ 978-3-030-72116-9_ 27
- Wall E, Ghorashi S, Ramos G (2019) Using expert patterns in assisted interactive machine learning: a study in machine teaching. In: Lamas D, Loizides F, Nacke L et al (eds) Human-computer interaction- INTERACT 2019. Springer, Berlin, pp 578-599. https:// doi. org/ 10. 1007/ 978-3-030-29387-1_ 34
- Wallace BC, Small K, Brodley CE et al (2012) Deploying an interactive machine learning system in an evidence-based practice center: Abstrackr. In: Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium. Association for Computing Machinery, New York, NY, USA, IHI '12, 819-824, https:// doi. org/ 10. 1145/ 21103 63. 21104 64
- Wang Y, Gan W, Yang J et al (2019) Dynamic curriculum learning for imbalanced data classification. In: 2019 IEEE/CVF international conference on computer vision (ICCV), 5016-5025, https:// doi. org/ 10. 1109/ ICCV. 2019. 00512
- Wang X, Pham H, Michel P et al (2020) Optimizing data usage via differentiable rewards. In: III HD, Singh A (eds) Proceedings of the 37th international conference on machine learning, proceedings of machine learning research, vol 119. PMLR, 9983-9995, https:// proce edings. mlr. press/ v119/ wang2 0p. html
- Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Trans Pattern Anal Mach Intell. https:// doi. org/ 10. 1109/ TPAMI. 2021. 30699 08
- Ware M, Frank E, Holmes G et al (2001) Interactive machine learning: letting users build classifiers. Int J Hum Comput Stud 55(3):281-292. https:// doi. org/ 10. 1006/ ijhc. 2001. 0499
- Weimer M (2010) Machine teaching: a machine learning approach to technology enhanced learning. PhD thesis, Darmstadt University of Technology, http:// tupri nts. ulb. tu-darms tadt. de/ 2109/
- Weinshall D, Cohen G, Amir D (2018) Curriculum learning by transfer learning: Theory and experiments with deep networks. In: Proceedings of the 35th annual international conference on machine learning, 5235-5243, http:// proce edings. mlr. press/ v80/ weins hall1 8a. html
- Weiss K, Khoshgoftaar TM, Wang D (2016) A survey of transfer learning. J Big data 3(1):1-40. https:// doi. org/ 10. 1186/ s40537-016-0043-6
- Weitekamp D, Harpstead E, Koedinger KR (2020) An interaction design for machine teaching to develop AI tutors. In: Proceedings of the 2020 CHI conference on human factors in computing systems, 1-11, https:// doi. org/ 10. 1145/ 33138 31. 33762 26
- Wing JM (2021) Trustworthy AI. Commun ACM 64(10):64-71. https:// doi. org/ 10. 1145/ 34482 48
- Wong JS (2018) Design and fiction: imagining civic AI. Interactions 25(6):42-45. https:// doi. org/ 10. 1145/ 32745 68
- Xu W (2019) Toward human-centered AI: a perspective from human-computer interaction. Interactions 26(4):42-46. https:// doi. org/ 10. 1145/ 33284 85
- Xu B, Zhang L, Mao Z et al (2020) Curriculum learning for natural language understanding. In: Proceed- ings of the 58th annual meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, 6095-6104, https:// doi. org/ 10. 18653/ v1/ 2020. acl-main. 542, https:// www. aclweb. org/ antho logy/ 2020. acl-main. 542
- Yang Q, Suh J, Chen NC et al (2018) Grounding interactive machine learning tool design in how non- experts actually build models. In: Proceedings of the 2018 designing interactive systems conference. Association for Computing Machinery, New York, NY, USA, DIS '18, 573-584, https:// doi. org/ 10. 1145/ 31967 09. 31967 29
- Yang SJ, Ogata H, Matsui T et al (2021) Human-centered artificial intelligence in education: seeing the invisible through the visible. Comput Educ 2(100):008. https:// doi. org/ 10. 1016/j. caeai. 2021. 100008
- Zbyszynski M, Tanaka A, Visi F (2020) Interactive machine learning: strategies for live performance using electromyography. In: Silva H (ed) Open source biomedical engineering. Springer, Berlin
- Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: Fleet D, Pajdla T, Schiele B et al (eds) European conference on computer vision. Springer, Cham, pp 818-833. https:// doi. org/ 10. 1007/ 978-3-319-10590-1_ 53
- Zeiler MD, Taylor GW, Fergus R (2011) Adaptive deconvolutional networks for mid and high level feature learning. In: 2011 International conference on computer vision, 2018-2025, https:// doi. org/ 10. 1109/ ICCV. 2011. 61264 74, https:// ieeex plore. ieee. org/ docum ent/ 61264 74
- Zhang X, Kumar G, Khayrallah H et al (2018) An empirical exploration of curriculum learning for neural machine translation. arXiv e-prints arxiv: 1811. 00739 [cs.CL]
- Zhang D, Han J, Guo G et al (2019a) Learning object detectors with semi-annotated weak labels. IEEE Trans Circuits Syst Video Technol 29(12):3622-3635. https:// doi. org/ 10. 1109/ TCSVT. 2018. 28841 73
- Zhang X, Shapiro P, Kumar G et al (2019b) Curriculum learning for domain adaptation in neural machine translation. In: Proceedings of the 2019 conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota, 1903-1915, https:// doi. org/ 10. 18653/ v1/ N19-1189, https:// www. aclweb. org/ antho logy/ N19-1189
- Zhao Y, Prosperi M, Lyu T et al (2020) Integrating crowdsourcing and active learning for classification of work-life events from tweets. In: Fujita H, Fournier-Viger P, Ali M et al (eds) Trends in artificial intel- ligence theory and applications. Artificial intelligence practices. Springer, Cham, pp 333-344. https:// doi. org/ 10. 1007/ 978-3-030-55789-8_ 30
- Zhou B, Khosla A, Lapedriza A et al (2016) Learning deep features for discriminative localization. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), 2921-2929, https:// doi. org/ 10. 1109/ CVPR. 2016. 319, https:// ieeex plore. ieee. org/ docum ent/ 77806 88
- Zhou Y, Yang B, Wong DF et al (2020) Uncertainty-aware curriculum learning for neural machine transla- tion. In: Proceedings of the 58th annual meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, 6934-6944, https:// doi. org/ 10. 18653/ v1/ 2020. acl- main. 620, https:// www. aclweb. org/ antho logy/ 2020. acl-main. 620
- Zhu X (2015) Machine teaching: An inverse problem to machine learning and an approach toward opti- mal education. In: Proceedings of the twenty-ninth AAAI conference on artificial intelligence. AAAI Press, AAAI'15, 4083-4087, https:// ojs. aaai. org/ index. php/ AAAI/ artic le/ view/ 9761
- Zhu X, Singla A, Zilles S et al (2018) An overview of machine teaching. arXiv e-prints arxiv: 1801. 05927
- Zhuang F, Qi Z, Duan K et al (2021) A comprehensive survey on transfer learning. Proc IEEE 109(1):43- 76. https:// doi. org/ 10. 1109/ JPROC. 2020. 30045 55