Scalar Field and Particle Dynamics in Conformal Frame
Frontiers in Physics
https://doi.org/10.3389/FPHY.2022.867766Abstract
The dynamics of the scalar field and particle in a conformal frame are considered. The conformal Klein-Gordon equation describing the scalar field is transformed into the quantum Telegraph equation in Minkowski space-time. The conformal factor acts like a background field having a perfect energy-momentum tensor. The scalar field decays exponentially with time during inflation allowing the conformal field to induce space energy. The conformal field grows with time at the expense of decreasing the energy density of the real scalar field. Einstein’s tensor embodies an energy-momentum tensor representing the background contribution reflecting the matter aspect of the gravitational field. The energy density arising from the conformal field is negative. The background energy associated with Einstein’s curvature tensor gives rise to massive gravitons that act like a cosmological constant. In an expanding Universe, this particular case yields a background energy proportional to the square o...
References (21)
- Weinberg S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. John Wiley & Sons (1972).
- Brans C, Dicke RH. Mach's Principle and a Relativistic Theory of Gravitation. Phys Rev (1961) 124:925-35. doi:10.1103/physrev.124.925
- Perivolaropoulos L. PPN Parameter γ and Solar System Constraints of Massive Brans-Dicke Theories. Phys Rev (2010) D81:047501. doi:10.1103/physrevd.81. 047501
- Freund PGO, Maheshwari A, Schonberg E. Finite-range Gravitation. ApJ (1969) 157:857. doi:10.1086/150118
- Arbab AI. Quantized Maxwell's Equations. Optik (2017) 136:64-70. doi:10. 1016/j.ijleo.2017.01.067
- Arbab AI. Quantum Telegraph Equation: New Matter Wave Equation. Optik (2017) 140:1010-9. doi:10.1016/j.ijleo.2017.05.002
- Arbab AI. Derivation of Dirac, Klein-Gordon, Schrödinger, Diffusion and Quantum Heat Transport Equations from a Universal Quantum Wave Equation. EPL (2010) 92:40001. doi:10.1209/0295-5075/92/40001
- Higgs PW. Broken Symmetries and the Masses of Gauge Bosons. Phys Rev Lett 13:508-9. doi:10.1103/physrevlett.13.508
- Dabrowski MP, Garecki J, Blaschke DB. Conformal Transformations and Conformal Invariance in Gravitation. Annalen Phys (2009) 18:13.
- Wald RM. General Relativity. University of Chicago Press (1984).
- Birrell ND, Davies PCW. Quantum fields in Curved Space. CUP (1982).
- Tugov II. Conformal Covariance and Invariant Formulation of Scalar Wave Equations. Ann de l'I. H. P., section A. (1969) 11:207.
- Bronnikov KA, Melnikov VN, Shikin GN, Staniukovich KP. Scalar, Electromagnetic, and Gravitational Fields Interaction: Particlelike Solutions. Ann Phys (1979) 118:84-107. doi:10.1016/0003-4916(79)90235-5
- Jackson JD. Classical Electrodynamics. Wiley (1998).
- Drummond IT, Shore GM. Conformal Anomalies for Interacting Scalar fields in Curved Spacetime. Phys Rev D (1979) 19:1134-43. doi:10.1103/physrevd.19.1134
- Rao J, Tiwari R, Nayak B. Massive Scalar Field: Source of the Graviton and 'Strong Gravity'. Aust J Phys (1976) 29:195. doi:10.1071/ph760195
- Boels RH, Wormsbecher W. Spontaneously Broken Conformal Invariance in Observables (2015). Available at: https://arxiv.org/abs/1507.08162v1.
- Chadha-Day F, John J, Marsh DJE, (2021) Axion Dark Matter: What Is it and Why Now? Available at: https://arxiv.org/abs/2105.01406v1.
- Di Teodoro EM, Fraternali F, Miller SH. Flat Rotation Curves and Low- Velocity Dispersions in KMOS star-forming Galaxies at Z ~1. Astron Astrophysics (2016) A77594:11.
- Magaña J, Matos T. A Brief Review of the Scalar Field Dark Matter Model. J Phys Conf Ser (2012) 378:012012. doi:10.1088/1742-6596/378/ 1/012012
- Noble A, Burtonau DA, Docherty L, Jaroszynski DA. Self-force on a Charged Particle in an External Scalar Field. New J Phys (2021) 23:115007. doi:10.1088/ 1367-2630/ac3262