Academia.eduAcademia.edu

Outline

Minimum entropy of graphs with given size

2022

Abstract

The first degree-based entropy of a graph is the Shannon entropy of its degree sequence normalized by the degree sum. Its correct interpretation as a measure of uniformity of the degree sequence requires the determination of its extremal values given natural constraints. In this paper, we prove that the graphs with given size that minimize the first degree-based entropy are the colex graphs.

References (20)

  1. S. Cambie, R. de Joannis de Verclos, and R. J. Kang. Regular Turán numbers and some Gan-Loh- Sudakov-type problems. To appear in Journal of Graph Theory, page arXiv:1911.08452, Nov. 2019.
  2. S. Cao and M. Dehmer. Degree-based entropies of networks revisited. Applied Mathematics and Com- putation, 261:141-147, 2015.
  3. S. Cao, M. Dehmer, and Y. Shi. Extremality of degree-based graph entropies. Information Sciences, 278:22-33, 2014.
  4. D. Chakraborti and D. Q. Chen. Many cliques with few edges and bounded maximum degree. J. Combin. Theory Ser. B, 151:1-20, 2021.
  5. Z. Chase. A Proof of the Gan-Loh-Sudakov Conjecture. arXiv e-prints, page arXiv:1912.01600, Dec 2019.
  6. Z. Chen, M. Dehmer, and Y. Shi. Bounds for degree-based network entropies. Applied Mathematics and Computation, 265:983-993, 2015.
  7. K. C. Das and M. Dehmer. A conjecture regarding the extremal values of graph entropy based on degree powers. Entropy, 18(5):183, 2016.
  8. M. Dehmer. Information processing in complex networks: Graph entropy and information functionals. Applied Mathematics and Computation, 201(1-2):82-94, 2008.
  9. M. Dehmer and V. Kraus. On extremal properties of graph entropies. MATCH Commun. Math. Comput. Chem, 68(3):889-912, 2012.
  10. M. Eliasi. On extremal properties of general graph entropies. MATCH Commun. Math. Comput. Chem., 79(3):645-657, 2018.
  11. W. Gan, P.-S. Loh, and B. Sudakov. Maximizing the number of independent sets of a fixed size. Combin. Probab. Comput., 24(3):521-527, 2015.
  12. A. Ghalavand, M. Eliasi, and A. Ashrafi. First entropy of graphs. Journal of Applied Mathematics and Computing, 59(1-2):37-46, 2019.
  13. A. Ilić. On the extremal values of general degree-based graph entropies. Information Sciences, 370:424- 427, 2016.
  14. J. Karamata. Sur une inégalité rélative aux fonctions convexes. Publ. Math. Univ. Belgrade, 1:145-148, 1932.
  15. G. Katona. A theorem of finite sets. In Theory of graphs (Proc. Colloq., Tihany, 1966), pages 187-207, 1968.
  16. R. Kirsch and A. J. Radcliffe. Many triangles with few edges. Electron. J. Combin., 26(2):Paper 2.36, 23, 2019.
  17. J. B. Kruskal. The number of simplices in a complex. In Mathematical optimization techniques, pages 251-278. Univ. of California Press, Berkeley, Calif., 1963.
  18. G. Lu, B. Li, and L. Wang. Some new properties for degree-based graph entropies. Entropy, 17(12):8217- 8227, 2015.
  19. G. Lu, B. Li, and L. Wang. New upper bound and lower bound for degree-based network entropy. Symmetry, 8(2):8, 2016.
  20. J. Yan. Topological structure of extremal graphs on the first degree-based graph entropies. MATCH Commun. Math. Comput. Chem., 85(2):275-284, 2021.