Finite-temperature effects in helical quantum turbulence
2018, Physical Review A
https://doi.org/10.1103/PHYSREVA.97.043629Abstract
We perform a study on the evolution of helical quantum turbulence at different temperatures by solving numerically the Gross-Pitaevskii and the Stochastic Ginzburg-Landau equations, using up to 4096 3 grid points with a pseudospectral method. We show that for temperatures close to the critical the fluid described by these equations can act as a classical viscous flow, with the decay of the incompressible kinetic energy and the helicity becoming exponential. The transition from this behavior to the one observed at zero temperature is smooth as a function of temperature. Moreover, the presence of strong thermal effects can inhibit the development of a proper turbulent cascade. We provide anzats for the effective viscosity and friction as a function of the temperature.
References (73)
- W. F. Vinen and J. J. Niemela, J. Low Temp. Phys. 128, 167 (2002).
- E. A. L. Henn, J. A. Seman, G. Roati, K. M. F. Magalhes, and V. S. Bagnato, Phys. Rev. Lett. 103, 045301 (2009).
- C. F. Barenghi, L. Skrbek, and K. R. Sreenivasan, Proc. Natl. Acad. Sci. U.S.A. 111, 4647 (2014).
- R. P. Feynman, in Progress in Low Temperature Physics, Vol. 1, edited by C. J. Gorter (Elsevier, 1955) pp. 17-53.
- R. J. Donnelly, Quantized Vortices in Helium II (Cam- bridge University Press, 1991).
- L. D. Landau and E. M. Lifshitz, Fluid mechanics (Elsevier/Butterworth-Heinemann, Amsterdam, 2004).
- H. E. Hall and W. F. Vinen, Proceedings of the Royal Society of London A: Mathematical, Physical and Engi- neering Sciences 238, 204 (1956).
- I. Bekarevich and I. Khalatnikov, Sov. Phys. JETP 13, 643 (1961).
- C. F. Barenghi and C. A. Jones, Physics Letters A 122, 425 (1987).
- P.-E. Roche, C. F. Barenghi, and E. Leveque, Europhys. Lett. 87 (2009).
- V. Shukla, A. Gupta, and R. Pandit, Phys. Rev. B 92, 104510 (2015).
- D. H. Wacks and C. F. Barenghi, Phys. Rev. B 84, 184505 (2011).
- L. Boué, V. S. L'vov, Y. Nagar, S. V. Nazarenko, A. Pomyalov, and I. Procaccia, Physical Review B 91, 144501 (2015).
- L. Boué, V. L'vov, A. Pomyalov, and I. Procaccia, Phys. Rev. Lett. 110, 014502 (2013).
- V. Shukla and R. Pandit, Phys. Rev. E 94, 043101 (2016).
- K. Schwarz, Phys. Rev. B 31, 5782 (1985).
- D. Khomenko, L. Kondaurova, V. S. L'vov, P. Mishra, A. Pomyalov, and I. Procaccia, Phys. Rev. B 91, 180504 (2015).
- D. Khomenko, V. S. L'vov, A. Pomyalov, and I. Procac- cia, Phys. Rev. B 93, 134504 (2016).
- N. P. Proukakis and B. Jackson, J. Phys. B 41, 203002 (2008).
- C. Nore, M. Abid, and M. Brachet, Phys. Rev. Lett. 78, 3896 (1997).
- P. Clark di Leoni, P. D. Mininni, and M. E. Brachet, Phys. Rev. A 95, 053636 (2017).
- N. G. Berloff, M. Brachet, and N. P. Proukakis, Proc. Natl. Acad. Sci. U.S.A. 111, 4675 (2014).
- M. J. Davis, S. A. Morgan, and K. Burnett, Phys. Rev. Lett. 87, 160402 (2001).
- C. Connaughton, C. Josserand, A. Picozzi, Y. Pomeau, and S. Rica, Phys. Rev. Lett. 95, 263901 (2005).
- E. Zaremba, T. Nikuni, and A. Griffin, Journal of Low Temperature Physics 116, 277 (1999).
- L. P. Pitaevskii, Sov. Phys. JETP 35, 408 (1959).
- S. Choi, S. A. Morgan, and K. Burnett, Phys. Rev. A 57, 4057 (1998).
- G. Krstulovic and M. Brachet, Phys. Rev. Lett. 106, 115303 (2011).
- G. Krstulovic and M. Brachet, Phys. Rev. E 83, 066311 (2011).
- V. Shukla, M. Brachet, and R. Pandit, New J. Phys. 15, 113025 (2013).
- M. Kobayashi and M. Tsubota, Phys. Rev. Lett. 97, 145301 (2006).
- B. Jackson, N. P. Proukakis, C. F. Barenghi, and E. Zaremba, Phys. Rev. A 79, 053615 (2009).
- S. J. Rooney, A. S. Bradley, and P. B. Blakie, Phys. Rev. A 81, 023630 (2010).
- A. J. Allen, S. Zuccher, M. Caliari, N. P. Proukakis, N. G. Parker, and C. F. Barenghi, Phys. Rev. A 90, 013601 (2014).
- S. J. Rooney, A. J. Allen, U. Zülicke, N. P. Proukakis, and A. S. Bradley, Phys. Rev. A 93, 063603 (2016).
- S. J. Rooney, T. W. Neely, B. P. Anderson, and A. S. Bradley, Phys. Rev. A 88, 063620 (2013).
- G. W. Stagg, A. J. Allen, N. G. Parker, and C. F. Barenghi, Phys. Rev. A 91, 013612 (2015).
- T. W. Neely, A. S. Bradley, E. C. Samson, S. J. Rooney, E. M. Wright, K. J. H. Law, R. Carretero-González, P. G. Kevrekidis, M. J. Davis, and B. P. Anderson, Phys. Rev. Lett. 111, 235301 (2013).
- G. Moon, W. J. Kwon, H. Lee, and Y.-i. Shin, Phys. Rev. A 92, 051601 (2015).
- J. Kim, W. Kwon, and Y. Shin, Phys. Rev. A 94 (2016), 10.1103/PhysRevA.94.033612.
- S. W. Seo, B. Ko, J. H. Kim, and Y. Shin, Scientific Reports 7, 4587 (2017).
- M. Paoletti, M. Fisher, K. Sreenivasan, and D. Lathrop, Phys. Rev. Lett. 101, 154501 (2008).
- E. Fonda, D. P. Meichle, N. T. Ouellette, S. Hormoz, and D. P. Lathrop, Proc. Natl. Acad. Sci. U.S.A. 111, 4707 (2014).
- P. Clark di Leoni, P. D. Mininni, and M. E. Brachet, Phys. Rev. A 92, 063632 (2015).
- D. P. Meichle, C. Rorai, M. E. Fisher, and D. P. Lathrop, Phys. Rev. B 86, 014509 (2012).
- E. Kozik and B. Svistunov, Phys. Rev. Lett. 92, 035301 (2004).
- V. S. L'vov and S. Nazarenko, J. Exp. Theor. Phys. Lett. 91, 428 (2010).
- L. Boué, R. Dasgupta, J. Laurie, V. L'vov, S. Nazarenko, and I. Procaccia, Phys. Rev. B 84, 064516 (2011).
- W. Vinen, M. Tsubota, and A. Mitani, Phys. Rev. Lett. 91, 135301 (2003).
- C. Nore, M. Abid, and M. E. Brachet, Phys. Fluids 9, 2644 (1997).
- A. Brissaud, U. Frisch, J. Leorat, M. Lesieur, and A. Mazure, Phys. Fluids 16, 1366 (1973).
- Q. Chen, S. Chen, G. L. Eyink, and D. D. Holm, Phys. Rev. Lett. 90, 214503.
- T. Teitelbaum and P. D. Mininni, Phys. Rev. Lett. 103, 014501.
- H. K. Moffatt, Proc. Natl. Acad. Sci. U.S.A. 111, 3663 (2014).
- H. K. Moffatt, J. Fluid Mech. 35, 117 (1969).
- H. K. Moffatt and R. L. Ricca, Proceedings of the Royal Society of London A: Mathematical, Physical and Engi- neering Sciences 439, 411 (1992).
- H. K. Moffatt and A. Tsinober, Annu. Rev. Fluid Mech. 24, 281 (1992).
- R. H. Kraichnan, J. Fluid Mech. 59, 745 (1973).
- J. C. André and M. Lesieur, J. Fluid Mech. 81, 187 (1977).
- D. K. Lilly, J. Atmos. Sci. , 126 (1986).
- M. W. Scheeler, D. Kleckner, D. Proment, G. L. Kindl- mann, and W. T. M. Irvine, Proc. Natl. Acad. Sci. U.S.A. 111, 15350 (2014).
- R. Hänninen, N. Hietala, and H. Salman, Scientific Re- ports 6, 37571 (2016).
- H. Salman, Proc. R. Soc. A 473, 20160853.
- H. Kedia, D. Kleckner, M. W. Scheeler, and W. T. M. Irvine, "Helicity in superfluids: conservation and the classical limit," (2017), arXiv:1708.01526 [cond- mat.quant-gas].
- S. Zuccher and R. L. Ricca, Phys. Rev. E 92, 061001 (2015).
- P. Clark di Leoni, P. D. Mininni, and M. E. Brachet, Phys. Rev. A 94, 043605 (2016).
- T. D. Lee, Quarterly of Applied Mathematics 10, 69 (1952).
- R. H. Kraichnan and S. Chen, Physica D: Nonlinear Phe- nomena 37, 160 (1989).
- P. D. Mininni, D. Rosenberg, R. Reddy, and A. Pouquet, Parallel Comput. 37, 316 (2011).
- A. C. White, B. P. Anderson, and V. S. Bagnato, Proc. Natl. Acad. Sci. U.S.A. 111, 4719 (2014).
- R. K. Pathria and P. D. Beale, Statistical Mechanics (Butterworth-Heinemann, 1996).
- J. Clyne, P. D. Mininni, A. Norton, and M. Rast, New Journal of Physics 9, 301 (2007).
- See Supplemental Material at URL for animations show- ing the evolution of the compensated energy and helicity spectra.