Academia.eduAcademia.edu

Outline

Information Processing and Dynamics in Minimally Cognitive Agents

https://doi.org/10.1111/COGS.12142

Abstract

There has been considerable debate in the literature about the relative merits of information processing vs. dynamical approaches to understanding cognitive processes. In this paper, we explore the relationship between these two styles of explanation using a model agent evolved to solve a relational categorization task. Specifically, we separately analyze the operation of this agent using the mathematical tools of information theory and dynamical systems theory. Information-theoretic analysis reveals how task-relevant information flows through the system to be combined into a categorization decision. Dynamical analysis reveals the key geometrical and temporal interrelationships underlying the categorization decision. Finally, we propose a framework for directly relating these two different styles of explanation and discuss the possible implications of our analysis for some of the ongoing debates in cognitive science.

References (112)

  1. Amblard, P. O, & Michel, O. J. J. (2009). Measuring information flow in networks of stochastic processes. arXiv preprint 0911.2873.
  2. Ashby, W. R. (1960). Design for a brain (2nd ed.). New York: Wiley.
  3. Averbeck, B. B., Latham, P. E., & Pouget, A. (2006). Neural correlations, population coding and computation. Nature Reviews Neuroscience, 7, 358-366.
  4. Ay, N., & Polani, D. (2008). Information flows in causal networks. Advances in Complex Systems, 11(1), 17-42.
  5. Barnett, L., Buckley, C. L., & Bullock, S. (2009). Neural complexity and structural connectivity. Physical Review E, 79(5), 051914.
  6. Barreira, L., & Valls, C. (2008). Stability of nonautonomous differential equations. Berlin: Springer.
  7. Bechtel, W. (1998). Representations and cognitive explanations: Assessing the dynamicist's challenge in cognitive science. Cognitive Science, 22, 295-318.
  8. Beer, R. D. (1995a). A dynamical systems perspective on agent-environment interaction. Artificial Intelligence, 72, 173-215.
  9. Beer, R. D. (1995b). Computational and dynamical languages for autonomous agents. In R. Port & T. van Gelder (Eds.), Mind as motion: Explorations in the dynamics of cognition (pp. 121-147). Cambridge, MA: MIT Press.
  10. Beer, R. D. (1996). Toward the evolution of dynamical neural networks for minimally cognitive behavior. In P. Maes, M. Mataric, J. -A. Meyer, J. Pollack & S. Wilson (Eds.), From animals to animats 4: Proceedings of the fourth international conference on simulation of adaptive behavior (pp. 421-429). Cambridge, MA: MIT Press.
  11. Beer, R. D. (1998). Framing the debate between computational and dynamical approaches to cognitive science (A commentary on "The dynamical hypothesis in cognitive science" by Tim van Gelder). The Behavioral and Brain Sciences, 21(5), 630.
  12. R. D. Beer, P. L. Williams / Cognitive Science (2014)
  13. Beer, R. D. (2003). The dynamics of active categorical perception in an evolved model agent. Adaptive Behavior, 11(4), 209-243.
  14. Beer, R. D., & Williams, P. L. (2009). Animals and animats: Why not both iguanas? Adaptive Behavior, 17, 296-302.
  15. di Bernardo, M., Budd, C. J., Champneys, A. R., & Kowalczyk, P. (2008). Piecewise-smooth dynamical systems: Theory and applications. London: Springer.
  16. Bollt, E. M., Stanford, T., Lai, Y.-C., & Zyczkowski, K. (2001). What symbolic dynamics do we get with a misplaced partition? On the validity of the threshold crossings analysis of chaotic time-series. Physica D: Nonlinear Phenomena, 154, 259-286.
  17. Brenner, N., Strong, S. P., Koberle, R., Bialek, W., de Ruyter, R., & van Steveninck., (2000). Synergy in a neural code. Neural Computation, 12(7), 1531-1552.
  18. Brooks, R. A. (1991). Intelligence without representation. Artificial Intelligence, 47, 139-159.
  19. Butts, D. A. (2003). How much information is associated with a particular stimulus? Network, 14, 3371-3374.
  20. Casey, M. (1996). The dynamics of discrete-time computation, with application to recurrent neural networks and finite state machine extraction. Neural Computation, 8(6), 1135-1178.
  21. Chemero, A. (2009). Radical Embodied Cognitive Science. Cambridge, MA: MIT Press.
  22. Chiel, H. J., Beer, R. D., & Gallagher, J. C. (1999). Evolution and analysis of model CPGs for walking I. Dynamical modules. Journal of Computational Neuroscience, 7(2), 99-118.
  23. Clark, A. (1997). Being there: Putting brain, body, and world together again. Cambridge, MA: MIT Press.
  24. Clark, A., & Toribio, J. (1995). Doing without representing? Synthese, 101, 401-431.
  25. Cover, T. M., & Thomas, J. A. (2006). Elements of information theory (2nd ed). New York: Wiley- Interscience.
  26. Crutchfield, J. P. (1994). The calculi of emergence: Computation, dynamics and induction. Physica D: Nonlinear Phenomena, 75, 11-54.
  27. Crutchfield, J. P. (1998). Dynamical embodiments of computation in cognitive processes. (A commentary on "The dynamical hypothesis in cognitive science" by Tim van Gelder). The Behavioral and Brain Sciences, 21(5), 635.
  28. Crutchfield, J. P., & Young, K. (1989). Inferring statistical complexity. Physical Review Letters, 63(2), 105- 108.
  29. Dale, R. (2008). The possibility of a pluralist cognitive science. Journal of Experimental and Theoretical Artificial Intelligence, 20(3), 155-179.
  30. Dale, R., & Spivey, M. J. (2005). From apples and oranges to symbolic dynamics: A framework for conciliating notions of cognitive representation. Journal of Experimental & Theoretical Artificial Intelligence, 17(4), 317-342.
  31. Dennett, D. C. (1984). Elbow room. Cambridge, MA: MIT Press.
  32. DeWeese, M. R., & Meister, M. (1999). How to measure the information gained from one symbol. Network, 10, 325-340.
  33. Diacu, F., & Holmes, P. (1996). Celestial encounters. Princeton: Princeton University Press.
  34. Dietrich, E., & Markman, A. B. (2003). Indiscrete thoughts: Why cognition must use discrete representation. Mind & Language, 18(1), 95-119.
  35. Dretske, F. (1981). Knowledge and the flow of information. Cambridge, MA: MIT Press.
  36. Eckhorn, R., & Popel, B. (1974). Rigorous and extended application of information theory to the afferent visual system of the cat. i. basic concepts. Kybernetik, 16, 191-200.
  37. Eckhorn, R., & Popel, B. (1975). Rigorous and extended application of information theory to the afferent visual system of the cat. ii. experimental results. Biological Cybernetics, 17(1), 7-17.
  38. Eliasmith, C. (2001). Attractive and in-discrete: A critique of two putative virtues of the dynamicist theory of mind. Minds and Machines, 11, 417-426.
  39. Fodor, J. A. (1975). The language of thought. Cambridge, MA: Harvard University Press.
  40. Friston, K. J. (1994). Functional and effective connectivity in neuroimaging: A synthesis. Human Brain Mapping, 2, 56-78.
  41. van Gelder, T. (1995). What might cognition be if not computation? The Journal of Philosophy, 97(7), 345- 381.
  42. van Gelder, T. (1998). The dynamical hypothesis in cognitive science. The Behavioral and Brain Sciences, 21, 615-655.
  43. van Gelder, T., & Port, R. F. (1995). It's about time: An overview of the dynamical approach to cognition. In R. F. Port, & T. van Gelder (Eds.), Mind as motion (pp. 1-43). Cambridge, MA: MIT Press.
  44. Gentner, D., & Kurtz, K. (2005). Relational categories. In P. Wolf, A. W. -K. , R. L Goldstone, B. C. Love & A. B. Markman (Eds.), Categorization inside and outside the laboratory (pp. 151-175). Washington, DC: APA.
  45. Giurfa, M., Zhang, S., Jenett, A., Menzel, R., & Srinivasan, M. (2001). The concepts of 'sameness' and 'difference' in an insect. Nature, 6831, 930-933.
  46. Grush, R. (1997). A review of Port and van Gelder's Mind as motion. Philosophical Psychology, 10(2), 233- 242. Haken, H. (1983). Synergetics (3rd ed.). Berlin: Springer-Verlag.
  47. Harnad, S.. Ed. (1994). What is computation (and is cognition that)? Special issue of Minds and Machines, 4 (4). Harvey, I., Di Paolo, E., Wood, R., Quinn, M., & Tuci, E. (2005). Evolutionary robotics: A new scientific tool for the study of cognition. Artificial Life, 11, 79-98.
  48. Haugeland, J. (1991). Representational genera. In W. Ramsey, S. P. Stich, & D. E. Rumelhart (Eds.), Philosophy and connectionist theory (pp. 61-89). Hillsdale, NJ: Lawrence Erlbaum.
  49. Hinrichs, H., Heinze, H. J., & Schoenfeld, M. A. (2006). Causal visual interactions as revealed by an information theoretic measure and FMRI. NeuroImage, 31(3), 1051-1060.
  50. Honey, C. J., Kotter, R., Breakspear, M., & Sporns, O. (2007). Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proceedings of the National Academy of Science USA, 104(24), 10240-10245.
  51. Hotton, S., & Yoshimi, J. (2011). Extending dynamical systems theory to model embodied cognition. Cognitive Science, 35(3), 444-479.
  52. Hutchins, E. (1995). Cognition in the wild. Cambridge, MA: MIT Press.
  53. Keinan, A., Meilijson, I., & Ruppin, E. (2003). Controlled analysis of neurocontrollers with informational lesioning. Philosophical Transactions of the Royal Society of London. Series A, 361, 2123-2144.
  54. Kelso, J. A. S. (1995). Dynamic patterns: The self-organization of brain and behavior. Cambridge, MA: MIT Press.
  55. Kennel, M. B., & Buhl, M. (2003). Estimating good discrete partitions from observed data: Symbolic false nearest neighbors. Physical Review Letters, 91, 084102.
  56. Kirsh, D., & Maglio, P. (1994). On distinguishing epistemic from pragmatic action. Cognitive Science, 18, 513-549.
  57. Kjaer, T. W., Hertz, J. A., & Richmond, B. J. (1994). Decoding cortical neuronal signals: Network models, information estimation and spatial tuning. Journal of Computational Neuroscience, 1(1), 109-139.
  58. Kurtz, K., & Boukrina, O. (2004). Learning relational categories by comparison of paired examples. In K. Forbus, D. Gentner, & T. Regier (Eds.), Proceedings of the Twenty-Sixth Annual Conference of the Cognitive Science Society (pp. 756-761). Mahwah, NJ: Lawrence Erlbaum.
  59. Kuznetsov, Y. A. (2004). Elements of applied bifurcation theory (3rd ed.). New York: Springer.
  60. Lasota, A., & Mackey, M. C. (1994). Chaos, fractals, and noise: stochastic aspects of dynamics (2nd ed.). New York: Springer-Verlag.
  61. Latham, P. E., & Nirenberg, S. (2005). Synergy, redundancy, and independence in population codes, revisited. Journal of Neuroscience, 25(21), 5195-5206.
  62. Liang, H., Ding, M., & Bressler, S. L. (2001). Temporal dynamics of information flow in the cerebral cortex. Neurocomputing, 38-40, 1429-1435.
  63. Lizier, J. T., Heinzle, J., Horstmann, A., Haynes, J. D., & Prokopenko, M. (2011). Multivariate information- theoretic measures reveal directed information structure and task relevant changes in FMRI connectivity. Journal of Computational Neuroscience, 30(1), 85-107.
  64. Lungarella, M., & Sporns, O. (2006). Mapping information flow in sensorimotor networks. PLoS Computational Biology, 2, 1301-1312.
  65. MacLennan, B. (2013). Analog computation. In R. Meyers (Ed.), Encyclopedia of Complexity and Systems Science (pp. 271-294). New York: Springer.
  66. Markman, A. B., & Deitrich, E. (2000b). In defense of representation. Cognitive Psychology, 40, 138-171.
  67. Markman, A. B., & Dietrich, E. (2000a). Extending the classical view of representation. Trends in Cognitive Sciences, 4, 70-75.
  68. Markman, A., & Stilwell, C. (2001). Role-governed categories. Journal of Experimental & Theoretical Artificial Intelligence, 13(4), 329-358.
  69. Millikan, R. (1984). Language, thought, and other biological categories: New foundations for realism. Cambridge, MA: MIT Press.
  70. Mirolli, M. (2012). Representations in dynamical embodied agents: Re-analyzing a minimally cognitive model agent. Cognitive Science, 36, 870-895.
  71. Mitchell, M. (1998). A complex systems perspective on the "Computation vs. Dynamics" debate in cognitive science. In M. A. Gernsbacher & S. J. Derry (Eds.), Proceedings of the 20th Annual Conference of the Cognitive Science Society (pp. 710-715). Mahwah, NJ: Lawrence Erlbaum.
  72. Narayanan, N. S., Kimchi, E. Y., & Laubach, M. (2005). Redundancy and synergy of neuronal ensembles in motor cortex. Journal of Neuroscience, 25(17), 4207-4216.
  73. Newell, A., & Simon, H. A. (1976). Computer science as an empirical enquiry: Symbols and search. Communications of the ACM, 19, 113-126.
  74. Neymotin, S. A., Jacobs, K. M., Fenton, A. A., & Lytton, W. W. (2011). Synaptic information transfer in computer models of neocortical columns. Journal of Computational Neuroscience, 30(1), 69-84.
  75. Panzeri, S., Schultz, S. R., Treves, A., & Rolls, E. T. (1999). Correlations and the encoding of information in the nervous system. Philosophical Transactions of the Royal Society. B, 266(1423), 1001-1012.
  76. Phattanasri, P., Chiel, H. J., & Beer, R. D. (2007). The dynamics of associative learning in evolved model circuits. Adaptive Behavior, 15(4), 377-396.
  77. Piccinini, G., & Bahar, S. (2013). Neural computation and the computational theory of cognition. Cognitive Science, 37(3), 453-488.
  78. Piccinini, G., & Scarantino, A. (2011). Information processing, computation, and cognition. Journal of Biological Physics, 37, 1-38.
  79. P€ otzsche, C. (2010). Geometric theory of discrete nonautonomous dynamical systems. Berlin: Springer.
  80. Pour-El, M. B. (1974). Abstract computability and its relation to the general purpose analog computer (some connections between logic, differential equations and analog computers). Transactions of the American Mathematical Society, 199, 1-28.
  81. Puchalla, L., Schneidman, E., Harris, R. A., & Berry, M. J. (2005). Redundancy in the population code of the retina. Neuron, 46, 493-504.
  82. Pylyshyn, Z. W. (1984). Computation and cognition: Toward a foundation for cognitive science. Cambridge, MA: MIT Press.
  83. Quiroga, R. Q., & Panzeri, S. (2009). Extracting information from neuronal populations: Information theory and decoding approaches. Nature Reviews Neuroscience, 10, 173-185.
  84. Ramsey, W. M. (2007). Representation reconsidered. Cambridge, MA: Cambridge University Press.
  85. Rasmussen, M. (2007). Attractivity and bifurcation for nonautonomous dynamical systems. Berlin: Springer.
  86. Reich, D. S., Mechler, F., & Victor, J. D. (2001). Independent and redundant information in nearby cortical neurons. Science, 294, 2566-2568.
  87. Rocha, L. M., & Hordijk, W. (2005). Material representations: From the genetic code to the evolution of cellular automata. Artificial Life, 11, 189-214.
  88. Saldanha, E., & Bitterman, M. (1951). Relational learning in the rat. The American Journal of Psychology, 64(1), 37-53.
  89. Scheutz, M. (Ed.) (2002). Computationalism: New directions. Cambridge, MA: MIT Press.
  90. Schneidman, E., Bialek, W., & Berry, M. J. (2003). Synergy, redundancy, and independence in population codes. Journal of Neuroscience, 23(37), 11539-11553.
  91. Sch€ oner, G. (2008). Dynamical systems approaches to cognition. In R. Sun (Ed.), The Cambridge handbook of computational psychology (pp. 101-126). Cambridge, UK: Cambridge University Press.
  92. Schreiber, T. (2000). Measuring information transfer. Physical Review Letters, 85, 461-464.
  93. Scott, D. W. (1985). Average shifted histograms: Effective nonparametric density estimators in several dimensions. The Annals of Statistics, 13, 1024-1040.
  94. Shalizi, C. R., & Crutchfield, J. P. (2001). Computational mechanics: Pattern and prediction, structure and simplicity. Journal of Statistical Physics, 104, 819-881.
  95. Shannon, C. (1948). A mathematical theory of communication. Bell Systems Technical Journal, 27(379-423), 623-656.
  96. Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony theory. In D. E. Rumelhart, J. L. McClelland & the PDP Research Group (Eds.), Parallel distributed processing, volume 1: Foundations (pp. 194-281). Cambridge, MA: MIT Press.
  97. Smolensky, P. (2012). Symbolic functions from neural computation. Philosophical Transactions of the Royal Society of London. Series A, 370, 3543-3569.
  98. Smolensky, P., Goldrick, M., & Mathis, D. (2013). Optimization and quantization in gradient symbol systems: A framework for integrating the continuous and the discrete. Cognitive Science, doi:10.1111/ cogs.12047.
  99. Smolensky, P., & Legendre, G. (2006). The harmonic mind. Cambridge, MA: MIT Press.
  100. Spivey, M. (2007). The continuity of mind. New York: Oxford University Press.
  101. Sporns, O. (2011). Networks of the brain. Cambridge, MA: MIT Press.
  102. Strogatz, S. H. (1994). Nonlinear dynamics and chaos. Reading, MA: Addison Wesley.
  103. Szczepanski, J., Arnold, M., Wajnryb, E., Amig o, J. M., & Sanchez-Vives, M. V. (2011). Mutual information and redundancy in spontaneous communication between cortical neurons. Biological Cybernetics, 104, 161-174.
  104. Tabor, W. (2009). A dynamical systems perspective on the relationship between symbolic and non-symbolic computation. Cognitive Neurodynamics, 3, 415-427.
  105. Theunissen, F. E., & Miller, J. P. (1991). Representation of sensory information in the cricket cercal sensory system. ii. information theoretic calculation of system accuracy and optimal tuning-curve widths of four primary interneurons. Journal of Neurophysiology, 66(5), 1690-1703.
  106. Varela, F. J., Thompson, E., & Rosch, E. (1991). The embodied mind, Cognitive science and human experience. Cambridge, MA: MIT Press.
  107. Warren, W. H. (2006). The dynamics of perception and action. Psychological Review, 113, 358-389.
  108. Williams, P. L., & Beer, R. D. (2010a). Nonnegative decomposition of multivariate information. arXiv. preprint, 1004, 2515.
  109. Williams, P. L., & Beer, R. D. (2010b). Information dynamics of evolved agents. In S. Doncieux, B. Girard, A. Buillot, J. Hallam, J.-A. Meyer, & J.-B. Mouret (Eds.), From Animals to Animats 11: Proceedings of the 11th International Conference on the Simulation of Adaptive Behavior (pp. 38-49). Berlin: Springer.
  110. Williams, P. L., Beer, R. D., & Gasser, M. (2008). An embodied dynamical approach to relational categorization. In B. C. Love, K. McRae, & V. M. Sloutsky (Eds.), Proceedings of the 30th Annual Conference of the Cognitive Science Society (pp. 223-228). Austin, TX: Cognitive Science Society.
  111. Wills, S. (1999). Relational learning in pigeons? The Quarterly Journal of Experimental Psychology: Section B, 52(1), 31-52.
  112. Zednik, C. (2011). The nature of dynamical explanation. Philosophy of Science, 78(2), 238-263.