Academia.eduAcademia.edu

Outline

Beyond the Death of Linear Response: 1/f- noise Resonance

2010

https://doi.org/10.1103/PHYSREVLETT.105.040601

Abstract

Non-ergodic renewal processes have recently been shown by several authors to be insensitive to periodic perturbations, thereby apparently sanctioning the death of linear response, a building block of nonequilibrium statistical physics. We show that it is possible to go beyond the ``death of linear response" and establish a permanent correlation between an external stimulus and the response of a complex network generating non-ergodic renewal processes, by taking as stimulus a similar non-ergodic process. We propose a theory for the transport of information through non-ergodic systems that explains why 1/f-noise is an efficient stimulus for complex systems. The ideal condition of 1/f-noise corresponds in fact to a singularity that is expected to be relevant in several experimental conditions of physical and biological interest.

References (44)

  1. J.-P. Eckmann et al., Phys. Rep. 449, 54 (2007);
  2. O. Feinerman and E. Moses, J. Neurosci. 26, 4526 (2006).
  3. J. M. Beggs, D. Plenz, J. Neurosci. 23, 11167 (2003);
  4. O. Kinouchi et al., Nature Phys. 2, 348 (2006);
  5. A. Levina et al., Phys. Rev. Lett. 102, 118110 (2009);
  6. G. Werner, BioSystems 96, 114 (2009);
  7. M. G. Kitzbichler et al., PLoS Comput. Biol. 5, e1000314 (2009).
  8. K. H. Norwich, Information, Sensation, and Perception (Academic, San Diego, CA, 1993).
  9. J. M. Medina, Phys. Rev. E 79, 011902 (2009).
  10. Y. Yu et al., Phys. Rev. Lett. 94, 108103 (2005).
  11. D. L. Gilden et al., Science 267, 1837 (1995).
  12. M. Nakao et al., Neural Networks 10, 1289 (1997).
  13. L. Gammaitoni et al., Rev. Mod. Phys. 70, 223 (1998).
  14. R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II (Springer-Verlag, Berlin, 1985).
  15. P. Ha ¨nggi and H. Thomas, Z. Phys. B 26, 85 (1977);
  16. Phys. Rep. 88, 207 (1982).
  17. M. Pelton et al., Appl. Phys. Lett. 85, 819 (2004).
  18. L. Silvestri et al., Phys. Rev. Lett. 102, 014502 (2009).
  19. X. Brokmann et al., Phys. Rev. Lett. 90, 120601 (2003).
  20. G. Bel and E. Barkai, Europhys. Lett. 74, 15 (2006);
  21. A. Rebenshtok and E. Barkai, Phys. Rev. Lett. 99, 210601 (2007);
  22. A. Lubelski et al., Phys. Rev. Lett. 100, 250602 (2008);
  23. Y. He et al., Phys. Rev. Lett. 101, 058101 (2008).
  24. I. M. Sokolov et al., Physica (Amsterdam) 302A, 268 (2001);
  25. I. M. Sokolov and J. Klafter, Phys. Rev. Lett. 97, 140602 (2006);
  26. I. M. Sokolov, Phys. Rev. E 73, 067102 (2006).
  27. F. Barbi et al., Phys. Rev. Lett. 95, 220601 (2005).
  28. E. Heinsalu et al., Phys. Rev. Lett. 99, 120602 (2007).
  29. A. Weron, et al., Phys. Rev. E 77, 036704 (2008).
  30. M. Magdziarz et al., Phys. Rev. Lett. 101, 210601 (2008).
  31. A. I. Shushin, Phys. Rev. E 78, 051121 (2008).
  32. P. Allegrini et al., Phys. Rev. Lett. 99, 010603 (2007).
  33. G. Aquino et al., Europhys. Lett. 80, 10 002 (2007).
  34. B. J. West, et al., Phys. Rep. 468, 1 (2008).
  35. G. Margolin, E. Barkai, J. Stat. Phys. 122, 137 (2006).
  36. M. Lukovic et al., J. Chem. Phys. 129, 184102 (2008).
  37. G. Aquino et al. (to be published).
  38. J. J. Collins et al., Nature (London) 376, 236 (1995).
  39. C. E. Shannon, Bell Syst. Tech. J. 27, 379 (1948).
  40. L. Liebovitch et al., Methods 24, 359 (2001);
  41. Z. Siwy and A. Fulin ´ski, Phys. Rev. Lett. 89, 158101 (2002).
  42. The NSLRT theory can also be realized through [21,22] ðt; t 0 Þ ¼ dÉ S ðt; t 0 Þ=dt ¼ c S ðt; t 0 Þ; which is called dynamic NSLRT and fits, e.g., the experi- mental results of Ref. [12].
  43. Nonetheless, we adopt here Eq. (2), which yields a response to periodic stimuli iden- tical to Refs. [15,17-20]. This choice makes more trans- parent our arguments on the role of R S ðtÞ, without altering the nature of the new NSLRT. The two prescriptions, as reported in Ref. [26], generate qualitatively equivalent results.
  44. J. M. Halley, Trends Ecol. Evol. 11, 33 (1996).