Beyond the Death of Linear Response: 1/f- noise Resonance
2010
https://doi.org/10.1103/PHYSREVLETT.105.040601Abstract
Non-ergodic renewal processes have recently been shown by several authors to be insensitive to periodic perturbations, thereby apparently sanctioning the death of linear response, a building block of nonequilibrium statistical physics. We show that it is possible to go beyond the ``death of linear response" and establish a permanent correlation between an external stimulus and the response of a complex network generating non-ergodic renewal processes, by taking as stimulus a similar non-ergodic process. We propose a theory for the transport of information through non-ergodic systems that explains why 1/f-noise is an efficient stimulus for complex systems. The ideal condition of 1/f-noise corresponds in fact to a singularity that is expected to be relevant in several experimental conditions of physical and biological interest.
References (44)
- J.-P. Eckmann et al., Phys. Rep. 449, 54 (2007);
- O. Feinerman and E. Moses, J. Neurosci. 26, 4526 (2006).
- J. M. Beggs, D. Plenz, J. Neurosci. 23, 11167 (2003);
- O. Kinouchi et al., Nature Phys. 2, 348 (2006);
- A. Levina et al., Phys. Rev. Lett. 102, 118110 (2009);
- G. Werner, BioSystems 96, 114 (2009);
- M. G. Kitzbichler et al., PLoS Comput. Biol. 5, e1000314 (2009).
- K. H. Norwich, Information, Sensation, and Perception (Academic, San Diego, CA, 1993).
- J. M. Medina, Phys. Rev. E 79, 011902 (2009).
- Y. Yu et al., Phys. Rev. Lett. 94, 108103 (2005).
- D. L. Gilden et al., Science 267, 1837 (1995).
- M. Nakao et al., Neural Networks 10, 1289 (1997).
- L. Gammaitoni et al., Rev. Mod. Phys. 70, 223 (1998).
- R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II (Springer-Verlag, Berlin, 1985).
- P. Ha ¨nggi and H. Thomas, Z. Phys. B 26, 85 (1977);
- Phys. Rep. 88, 207 (1982).
- M. Pelton et al., Appl. Phys. Lett. 85, 819 (2004).
- L. Silvestri et al., Phys. Rev. Lett. 102, 014502 (2009).
- X. Brokmann et al., Phys. Rev. Lett. 90, 120601 (2003).
- G. Bel and E. Barkai, Europhys. Lett. 74, 15 (2006);
- A. Rebenshtok and E. Barkai, Phys. Rev. Lett. 99, 210601 (2007);
- A. Lubelski et al., Phys. Rev. Lett. 100, 250602 (2008);
- Y. He et al., Phys. Rev. Lett. 101, 058101 (2008).
- I. M. Sokolov et al., Physica (Amsterdam) 302A, 268 (2001);
- I. M. Sokolov and J. Klafter, Phys. Rev. Lett. 97, 140602 (2006);
- I. M. Sokolov, Phys. Rev. E 73, 067102 (2006).
- F. Barbi et al., Phys. Rev. Lett. 95, 220601 (2005).
- E. Heinsalu et al., Phys. Rev. Lett. 99, 120602 (2007).
- A. Weron, et al., Phys. Rev. E 77, 036704 (2008).
- M. Magdziarz et al., Phys. Rev. Lett. 101, 210601 (2008).
- A. I. Shushin, Phys. Rev. E 78, 051121 (2008).
- P. Allegrini et al., Phys. Rev. Lett. 99, 010603 (2007).
- G. Aquino et al., Europhys. Lett. 80, 10 002 (2007).
- B. J. West, et al., Phys. Rep. 468, 1 (2008).
- G. Margolin, E. Barkai, J. Stat. Phys. 122, 137 (2006).
- M. Lukovic et al., J. Chem. Phys. 129, 184102 (2008).
- G. Aquino et al. (to be published).
- J. J. Collins et al., Nature (London) 376, 236 (1995).
- C. E. Shannon, Bell Syst. Tech. J. 27, 379 (1948).
- L. Liebovitch et al., Methods 24, 359 (2001);
- Z. Siwy and A. Fulin ´ski, Phys. Rev. Lett. 89, 158101 (2002).
- The NSLRT theory can also be realized through [21,22] ðt; t 0 Þ ¼ dÉ S ðt; t 0 Þ=dt ¼ c S ðt; t 0 Þ; which is called dynamic NSLRT and fits, e.g., the experi- mental results of Ref. [12].
- Nonetheless, we adopt here Eq. (2), which yields a response to periodic stimuli iden- tical to Refs. [15,17-20]. This choice makes more trans- parent our arguments on the role of R S ðtÞ, without altering the nature of the new NSLRT. The two prescriptions, as reported in Ref. [26], generate qualitatively equivalent results.
- J. M. Halley, Trends Ecol. Evol. 11, 33 (1996).