Towards Next-Generation Small-Size Boron Ion Implanting Apparatus
Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences.
https://doi.org/10.2478/PROLAS-2022-0030Abstract
The article provides a brief insight in the history of ion implantation, paying special attention to boron ion implantation in high purity Germanium crystal, exclusively valuable in the production of highly effective sensors of high-energy radiation to detect photons in the range of megaelectron-volt or higher up to hard X-ray range. There is a need for small user-friendly implanters in response to urgent demand to scale up production of short wave sensors, which are in exclusive demand for various nuclear safety systems worldwide. Particularly, research driven “high tech” small and medium enterprises in Latvia are among the three leading worldwide producers of such sensors and systems. These SME provide instrumentation to the International Atomic Energy Agency, to the government of Singapore, to the government of Japan to facilitate dealing with nuclear waste management caused by the Fukushima disaster, and to the European Space Agency. The challenge is to find technology that allo...
References (70)
- A compilation of outgassing data on vacuum materials (1982). Princeton University Plasma Physics Laboratory Database. https://ncsx.pppl.gov/NCSX_Engineering/Materials/VacuumMaterials/ Outgassing_Data.pdf (accessed 12.03.2022).
- Alton, G. D. (1974). Ion Sources for Accelerators. www.osti.gov/servlets/purl/4244522-TwJ9HX/ (accessed 14.03.2022).
- Analog Devices. Datasheet AD9851: CMOS 180 MHz DDS/DAC Synthe- sizer Data Sheet (Rev. D). www.analog.com/media/en/technical-documentation/data-sheets/AD9851.pdf (accessed 14.03.2022).
- Atalla, M., Tannenbaum, E., Scheibner, E. J. (1959). Stabilization of silicon surfaces by thermally grown oxides. Bell Syst. Techn. J., 38 (3), 749-783. doi:10.1002/j, 1538-7305.
- Brotherton, R. J., Steinberg, H. (2016). Progress in Boron Chemistry: Vol- ume 2. Elsevier Science & Technology, Kent. 310 pp.
- Bugaev, A. S., Vizir, A. V., Gushenets, V. I., Nikolaev, A. G., Oks, E. M., Savkin, K. P., Yushkov, Yu. G., Tyunkov, A. V. (2019). Generation of bo- ron ions for beam and plasma technologies. Russ. Phys. J., 62 (7), DOI: 10.1007/s11182-019-01825-6.
- Chiggiato, P. (2017). Materials and Properties IV, Outgassing. https://indico.cern.ch/event/565314/contributions/2285743/attachments/ 1466415/2277367/Outgassing-CAS-Lund-final.pdf (accessed 13.08.2020). Chivers, D. J. (1992). Freeman ion source: An overview (invited). Rev. Sci. Instrum., 63 (4), 2501-2506. https://doi.org/10.1063/1.1142874 (accessed 12.03.2022).
- Christensen, S. M. (2012). Modeling and measuring the characteristics of an inductivly coupled plasma antenna for micro-propulsion system. Master's Thesis, Boise State University. 92 pp. https://scholarworks.boisestate.edu/cgi/viewcontent.cgi?article=1345&context=td (accessed 12.03.2022).
- Current, M. I., Rubin, L., Sinclair, F. (2018). Commercial ion implantation systems (Chapter 3). In: Ion Implantation Science and Technology. Ion Im- plant Technology Co, p. 44.
- Darlington, S. (1952). Semiconductor signal translation device. US Patent 1952-05-09 as US286914A, at 1953-12-22 refreshed asUS2663806A. Filed by Bell Telephone Laboratories Inc 1952-05-09.
- Encyclopedia of Spectroscopy and Spectrometry (3 rd edn.) (2016). Academic Press. 3584 pp.
- Evans, E. H. Encyclopedia of Analytical Science (2 nd edn.) (2005). Elsevier. 5000 pp.
- Fair, R. B. (1998). History of some early developments in ion-implantation technology leading to silicon transistor manufacturing. Proc. IEEE, 86 (1), 111-137.
- Fourches, N., Zieliñska, M., Charles, G. (2019). High purity germanium: From gamma-ray detection to dark matter subterranean detectors. In: Almayahi, B. (Ed.). Use of Gamma Radiation Techniques in Peaceful Ap- plications. http://dx.doi.org/10.5772/intechopen.82864.
- Freeman, J. H. (1963). A new ion source for electromagnetic isotope separa- tors. Nucl. Instrum. Meth., 22, 306-316.
- Frolova, V. P., Gushenets, V. I., Yushkov, G., Frolova, V. P., Shandrikov, M. V., Tyunkov, A., Savkin, K. P., Yushkov, Y., Nikolaev, A. G., Oks, E. M, Gushenets, V., Bugaev, A. S., Vizir, A. V. (2017). Generation of boron ions for beam and plasma technologies. IEEE Trans. Plasma Sci., 45, 2070-2074.
- Gentile, K., Cushing, R. (1999). Technical Tutorial on Digital Signal Synthe- sis. www.analog.com/en/education/education-library/technical-tutorial-dds.html (accessed 13.03.2022).
- Gibbons, J. F. (1968). Ion implantation in semiconductors-Part I: Range distribution theory and experiments. Proc. IEEE, 56 (3), 295-319.
- Gibbons, J. F. (1972). Ion implantation in semiconductors-Part II: Damage production and annealing. Proc. IEEE, 60 (9), 1062-1096.
- Gibbons, J. F. (1987). Historical perspectives on ion implantation. Nucl. Instrum. Meth., B21, 83-89.
- Gott, R. P. (2017). The development and analysis of a heaterless, insertless, microplasma-based hollow cathode. MSc Thesis. Department of Mechani- cal and Aerospace Engineering, University of Alabama, Huntsville. 73 pp. r l / p a p e r s / t h e s i s / 2018_gott_ms_thesis_final.pdf (accessed 20.04.2022).
- Greiner, E. S., Gutowski, J. A. (1957). Electrical resistivity of boron. J. Appl. Phys., 28, 1364. DOI:10.1109/TPS.2011.2167634
- Greenfield, S., Durrani, T. M., Tyson, J., Watson, C. A. (1990). A compari- son of boosted-discharge hollow cathode lamps and an inductively coupled plasma (ICP) as excitation sources in ICP atomic fluorescence spectrome- try. Spectrochim. Acta B Atom. Spectrosc., 45 (3), 341-349.
- Gundersen, M. A., Schaefer, G., Schoenbach, K. H. (1990). Basic mecha- nisms contributing to the hollow cathode effect. In: Physics and Applica- tions of Pseudosparks. NATO ASI Series (Series B: Physics), Vol. 219. Springer, Boston, pp. 55-76.
- Gushenets, V. I., Oks, E. M., Bugaev, A. S. (2018). Generation of boron ions for beam and plasma technologies. Proceedings of the 28 th International Symposium on Discharges and Electrical Insulation in Vacuum. Greifswald, pp. 411-414.
- Gushenets, V., Bugaev, A., Oks, E. (2019). Boron vacuum-arc ion source with LaB6cathode. Rev. Sci. Instrum., 90, 113309. DOI: 10.1063/1.5127096.
- Hanley, P. R. (1983). Physical limitations of ion implantation equipment. In: Ryssel, H. et al. (eds.). Ion Implantation: Equipment and Techniques. Springer-Verlag, Berlin/Heidelberg, pp. 2-24.
- Harwick, J. (Radio Corporation of America) (1953). Semiconductor phase shift oscillator and device. US Patent No. 2,816,228. Filed 21 May 1953. Serial No. 356,407.
- Hoerni, A. (1962). Method of manufacturing semiconductor devices. U.S. Patent 3 202 589, Mar. 20.
- Hyo-Chang, L. (2018). Review of inductively coupled plasmas: Nano-appli- cations and bistable hysteresis physics. Appl. Phys. Rev., 5, 011108. https://doi.org/10.1063/1.5012001
- Ishikawa, D., Hasegawa, S. (2019). Development of removable hollow cath- ode discharge apparatus for sputtering solid metals. J. Spectrosc., 2019, 7491671. DOI: 10.1155/2019/7491671.
- Jacobi, W. (1951). Switching device. US Patent No. 2,753,489, 3 July 1956. Filed 29 November 1951. Serial No. 258,774, issued to Siemens & Halske Aktiengesellschaft.
- Karatodorov, S. I. (2017). Combined plasma source for emission spectros- copy: laser-induced plasma in hollow cathode discharge. Dr. Thesis. Insti- tute of Solid State Physics, Bulgarian Academy of Sciences. 132 pp. Karatodorov/publication/322661198_Combined_Plasma_Source_for_
- Emission_Spectroscopy_Laser-Induced_Plasma_in_Hollow_Cathode_ Discharge/links/5a673b21aca2720266b44198/Combined-Plasma- Source-for-Emission-Spectroscopy-Laser-Induced-Plasma-in-Hollow-Ca thode-Discharge.pdf (accessed 20.04.2022).
- Kilby, J. (1958). Miniaturized electronic circuits. US Patent US3138743A. 23 June 1964. Filed 6 February 1959. (Device was demonstrated in Sep- tember 1958 to Texas Instruments management).
- Lark-Horovitz, K., Bentor, S., Davis, R. E.(1952). Photoelectric and thermo- electric device utilizing semiconducting material. U.S. Patent 2 588 254, 4 March 1952. Filed 9 May 1950, No. 161,002.
- Lehovec, K. (Sprague Electric Company). Multiple semiconductor assem- bly. US Patent No. US3029366A, 10 April 1962. Filed 22 April 1959. No. 808,249.
- Looker, Q. (2014). Fabrication Process Development for High-Purity Ger- manium Radiation Detectors with Amorphous Semiconductor Contacts. PhD dissertation. University of California, Berkeley. h t t p s : / / 8 / qt1d14c7t8_noSplash_d8581bc67bbfabef97cb5a90208c0d28.pdf (ac- cessed 12.03.2022).
- Masamba, W. R., Smith, B. W., Krupa, R. J., Winefordner, J. D. (1988). Atomic and ionic fluorescence in an inductively coupled plasma using hol- low cathode lamps pulsed at high currents as excitation sources. Appl. Spectrosc., 42, 872-878. https://doi.org/10.1366/0003702884428851 (ac- cessed 12.03.2022).
- Momentive products data: Permeability of Fused Quartz. www.momentive.com/en-us/categories/quartz/permeability (accessed 12.03.2022).
- Moyer, J. W. (1958). Method of making junction semiconductor unit. U.S. Patent 2 842 466, 8 July 1958. Filed 15 June 1954. No. 436,816.
- Norman, R., Last, J., Haas, I. (1960). Solid-state micrologic elements. In: IEEE International Solid-State Circuits Conference, Philadelphia, 10-12 February 1960. III, pp. 82-83. DOI:10.1109/ISSCC.1960.1157264
- Ohl, R. S. (1949). Semiconductor translating devices. U.S. Patent 2 750 54, 12 June 1956. Filed 27 April 1949. No. 89,969.
- Okumura, T. (2010). Inductively Coupled Plasma Sources and Applications. Hindawi Publishing Corporation. Phys. Res. Int., 2010, 164249. DOI: 10.1155/2010/164249.
- Pfann, W. G. (1952). Semiconductor signal translating device. U.S. Patent by Bell Telephone Laboratories Inc, Filed No 2597 028 at 11.10.1949 as US120661A, and as US120662A at 09.10.1951, then published as US2570978A
- Pittaway, L. (1970). Ion Gauges. US Patent, 29.02.1969 priority to Philips corp GB5300769, published 26.06.1973 as US3742343A.
- Plasek, M. L., Jorns, B., Choueiri, E. Y., Polk, J. E. (2012). Exploration of RF-Controlled High Current DensityHollow Cathode Concepts. Princeton University publications. https://alfven.princeton.edu/publications/plasek-jpc-2012-4083 (accessed 12.03.2022).
- Plasek, M. L., Wordingham, C. J., Choueiri, E. Y., Polk, J. E. (2013). Modeling and Development of the RF-Controlled Hollow Cathode Con- cept. doi: 10.2514/6.2013-4036. https://arc.aiaa.org/doi/10.2514/6.2013-4036 (accessed 12.03.2022).
- Prohaska, T., Irrgeher, J. Zitek, A., Jakubowski, N. (2005). Sector Field Mass Spectrometry for Elemental and Isotopic Analysis. Royal Society of Chemistry. 666 pp.
- Reliance Precision Ltd. Clean Assembly and Manufacturing Solutions for the Scientific, Medical and Analytical Industries, p. 11. www.reliance.co.uk/wp-content/uploads/2017/03/SPSI3-Scientific-Is- sue-B-web.pdf (accessed 12.03.2022).
- Rose, P. H., Ryding, G. (2006). Concepts and designs of ion implantation equipment for semiconductor processing. Rev. Sci. Instrum., 77, 111101. doi.org/10.1063/1.2354571
- Sah, C. T. (1988). Evolution of the MOS transistor. From concept to VLSI. Proc. IEEE, 76, 1280.
- Saxena, A. (2009). Invention of integrated circuits: Untold important facts. World Scientific Publishing Company 564 pp..
- Shockley, W. (1954). Forming semiconductive devices by ionic bombard- ment.
- U.S. Patent 2 787 564, 2 April 1957. Filed 28 October 1954. No. 465,393. Sidenius, G. (1965). The high temperature hollow cathode ion source. Nucl. Instrum. Meth., 38, 19-22.
- Sparks, M., Teal, G. K. (1953). Method of Making P-N Junctions in Semicon- ductor Materials. U.S. Patent 2631356. Filed 15 June 1950. Issued 17 March 1953.
- Steward, S. A. (1983). Review of hydrogen isotope permeability through materials. www.osti.gov/servlets/purl/5277693/ (accessed 12.03.2022).
- Sziklai, G. C. (1956). Multielement semiconductor devices. U.S. Patent 2 735 948, 21 February 1956. Filed 21 January 1953. No. 332,459.
- Taylor, S., Gibson, J. (2008). Prediction of the effects of imperfect construc- tion of a QMS filter. J. Mass Spectr., 43, 609-616. DOI: 10.1002/jms.1356.
- Tarui, Y. (1959). Japanese Patent Shôwa, 34-6175. Japan Patent Office 1959. Filed 26 March 1957.
- Turek, M., Drozdziel, A., Pyszniak, K., Maczka, D., Slowinski, B. (2013). Production of doubly charged ions using a hollow cathode ion source with an evaporator. Acta Phys. Pol. A, 123 (5) (Proceedings of the IX Interna- tional Conference ION 2012, Kazimierz Dolny, Poland, 25-28 June 2012).
- Walther, S. R., Pedersen, B. O., McKenna, C. M. (1991). Ion sources for commercial ion implanter applications. Conference Record of the IEEE Particle Accelerator Conference. DOI: 10.1109/PAC.1991.164876. https://accelconf.web.cern.ch/p91/PDF/PAC1991_2088.PDF (accessed 12.03.2022).
- Wieser M.E., Brand W.A. (2013). Isotope Ratio Studies Using Mass Spec- trometry. Inductively coupled plasma. In: Encyclopedia of Spectroscopy and Spectrometry (3 edn.). Oxford, London, San-Diego, Cambridge, USA, pp. 488-500.
- Williams, J. M., Klepper, C. C., Chivers, D. J., Hazelton, R. C., Freeman, J. H. (2008). Operation and applications of the boron cathodic arc ion source. AIP Conf. Proc., 1066, 469-472. https://doi.org/10.1063/1.3033664 (ac- cessed 12.03.2022).
- Wilson, A. H. (1965). The Theory of Metals (2 nd edn.). Cambridge Univer- sity Press. 345 pp.
- Winchester, M. R., Paylinga, R. (2004). Radio-frequency glow discharge spectrometry: A critical review. Spectrochimica Acta Part B, 59, 607-666. DOI:10.1016/j.sab.2004.02.013.
- Woodyard, J. R. (1944). Nonlinear circuit device utilizing germanium. U.S.US Patent filed 02.06.1944 by Sperry Group, granted 14.11.1950 as US538404A, published as US2530110A
- Proc. Latvian Acad. Sci., Section B, Vol. 76 (2022), No. 2.
- CEÏÂ UZ JAUNAS PAAUDZES MINIATÛRU BORA JONU IMPLANTÂCIJAS APARÂTU Rakstâ analizçts, kâdâm jaunâko laiku tehnoloìiskâm inovâcijâm vçrts pievçrsties, kad mçríis ir izstrâdât visaugstâkâs tîrîbas iespçjami miniatûru, lçtu, bet eksperimentâla tipa raþoðanâ daþâdiem uzdevumiem viegli adaptçjamu bora jonu implantçðanas aparâtu. Konstatçts, ka liela nozîme ir pârejai uz cietvielu bora izejvielu gâzveida izejvielu vietâ un sniegtas atsauces uz vairâkâm publikâcijâm par perspektîvâm konstrukcijâm ðajâ jomâ, tai skaitâ, lietojot kombinçtu dobâ katoda izlâdes sistçmu ar nesçjgâzes apstrâdi ar induktîvi saistîtu plazmu dobâ katoda ieejâ, kâ arî izmantojot faktu, ka bora elektriskâ pretestîba ïoti strauji krîtas pie viegli sasniedzamas paaugstinâtas temperatûras.
- Konstatçts, ka ievçrojamu labumu varçtu gût, sistçmâ iestrâdâjot masspektrometrijas nozarç lieliski zinâmo, bet pagaidâm implantçðanai nepazîstamo kvadrupola masselektoru magnçtiskas sistçmas vietâ. Ieteikts izmçìinât kvarcu kâ vakuumsistçmas detaïu materiâlu, jo ðis materiâls pareizas sagatavoðanas apstâkïos ïauj iegût, iespçjams, lîdz èetrâm kârtâm mazâku vakuuma piesâròojumu nekâ labs nerûsoðais tçrauds lîdzîgos apstâkïos. Domâjams, ka raksts varçtu radît ievçrojamu interesi implantâcijas iekârtu izstrâdâtâjiem un arî maziem inovatîviem uzòçmumiem implantâcijas jomâ.