Academia.eduAcademia.edu

Outline

Back to Fundamentals: Convex Geometry and Economic Equilibrium

Abstract

We propose a notion of competitive equilibrium in an abstract setting called a Convex Economy using a concept of convexity borrowed from Convex Geometry. The "magic" of linear equilibrium prices is put into perspective in this abstract setting. The abstract notion of competitive equilibrium is applied to a variety of convex economies and versions of the first and second fundamental welfare theorems are proved.

References (16)

  1. Aizerman, Mark A. and Andrei V. Malishevski. 1981. "Some Aspects of the General Theory of Best Option Choice". Avtomatika i Telemekhanika (Automation and Remote Control), 42, 65-83.
  2. Baldwin, Elizabeth and Paul Klemperer. 2013. "Tropical Geometry to Analyse Demand". Nuffield College, mimeo.
  3. Danilov, Vladimir, Gleb A Koshevoy and Kazuo Murota. 2001. "Discrete Convexity and Equilibria in Economies with Indivisible Goods and Money". Mathematical Social Sciences, 44, 251-273.
  4. Edelman, Paul. H. and Robert E. Jamison. 1985. "The Theory of Convex Geometries". Geometriae Dedicata, 19, 247-270.
  5. Koshevoy, Gleb A. 1999. "Choice Functions and Abstract Convex Geometries". Mathematical Social Sciences, 38, 35-44.
  6. Piccione, Michele and Ariel Rubinstein. 2007. "Equilibrium in the Jungle". Economic Journal, 117, 883-896.
  7. Sen, Amartya K. 1970. Collective Choice and Social Welfare. Holden-Day.
  8. Shapley, Lloyd S. and Herbert E. Scarf. 1974. "On Cores and Indivisibility". Journal of Mathematical Economics, 1, 23-37. Footnotes
  9. By A2, KA ∩ B ⊆ KA ∩ KB and thus KA ∩ B ⊆ A ∩ B. By A1, A ∩ B ⊆ KA ∩ B.
  10. By A3, A1A2, A2 accordingly KA  KKA ⊇ KA  x ⊇ KA.
  11. If z ∈ extA -extA -x, then KA -z ⊂ KA and KA -x  KA -x -z. By A2, KA -x -z ⊆ KA -z. Thus, KA -x ⊂ KA, contradicting x ∉ extA. If z ∈ extA -x -extA, then KA -x -z ⊂ KA -x and KA -z  KA. By x ∉ extA, we have KA -x  KA and thus, KA -x -z ⊂ KA. To obtain a contradiction to A4, note that: (i) By A3, KA -x -z is convex.
  12. x ∉ KA -x -z because otherwise by F2, KA -x -z  KA -z  KA. Similarly, z ∉ KA -x -z.
  13. KKA -x -z  x ⊇ KA -x -z  x  KA -z  KA (the inclusion is by A1 and A2) and thus z ∈ KKA -x -z  x. Similarly, x ∈ KKA -x -z  z.
  14. Let x ∈ A -extA. Then, KA -x  KA. It is then sufficient to notice that by F3 extA -x  extA and to iteratively remove elements of A -extA from A. 5. See Theorem 4 in Koshevoy (1999).
  15. Let a ∈ extA ∩ A ′ . If a ∉ extA ′ , then a ∈ KA ′ -a and by A2 a ∈ KA -a and by F2 KA -a  KA, contradicting a ∈ extA.
  16. Take x ∈ A -extA. By F4, extA -x  extA. Iteratively apply to all members of A -A ′ .