Academia.eduAcademia.edu

Outline

Geometry

Abstract

challenges in geometry

References (32)

  1. 4.3 As in Example 4.4.2 of the text, x = 1 (mod 4) and y is even. Now y 2 + 4 = (x + 3)(x 2 -3x + 9) and the quadratic is 3 (mod 4), and must therefore have a prime factor that is 3 (mod 4). However, y 2 + 4 can have no such factor. Here we are using the result that, if a 2 + b 2 has a factor k = 3 (mod 4), then k|a and k|b.
  2. 4.4 From the text, the condition is 2s|(3r 2 + a). Exercises 5.1
  3. 1.1 If p is an odd prime of the form 4k + 1 then there exists an integer n such that 4T n + 1 = 0 (mod p).
  4. 1.4 l = m = 2k + 1 will serve.
  5. 9.2 The triangles IGT and W GO are similar. Exercises 9.1
  6. 1.1 a = 11. The tetrahedron with sides 110, 99, 79, 77, 57, and 46 has rational volume.
  7. 2.1 a = 168, b = 178, c = 158, and R = 103.
  8. 3.1 (i) Truncated tetrahedron: 4 hexagons, 4 triangles, 12 vertices, and 18 edges. (ii) Truncated cube: 6 octagons, 8 triangles, 24 vertices, and 36 edges. (iii) Cuboctahedron: 6 squares, 8 triangles, 12 vertices, and 24 edges. (iv) Truncated octahedron: 8 hexagons, 6 squares, 24 vertices, and 36 edges. (v) Small rhombicuboctahedron: 16 squares, 8 triangles, 22 vertices, and 44 edges.
  9. Great rhombicuboctahedron: 6 octagons, 12 squares, 40 vertices, and 60 edges. (vii) Snub cube: 6 squares, 32 triangles, 24 vertices, and 60 edges. (viii) Icosidodecahedron: 12 pentagons, 20 triangles, 30 vertices, and 60 edges. (ix) Truncated dodecahedron: 12 decagons, 20 triangles, 60 vertices, and 90 edges.
  10. Great rhombicosidodecahedron: 12 decagons, 30 squares, 20 hexagons, 120 vertices, and 180 edges.
  11. Bradley, C. J. (1988). Triangular numbers and sums of squares. Mathematical Gazette, 72, 297.
  12. Bradley, C. J. (1996). On solutions of m 2 + n 2 = 1 + l 2 . Mathematical Gazette, 80, 404. Bradley, C. J. (1998). Equal sums of squares. Mathematical Gazette, 82, 80.
  13. Bradley, C. J. (2002). More on Simson conics and lines. Mathematical Gazette, 86, 303.
  14. Bradley, C. J. (2005). Euclidean geometry: from theory to problem solving, Chapters 3-7. United Kingdom Mathematics Trust, Leeds University. In press.
  15. Bradley, C. J. and Bradley, J. T. (1996). Countless Simson line configurations. Math- ematical Gazette, 80, 314.
  16. Conway, J. H. and Guy, R. K. (1996). The book of numbers. Springer-Verlag, New York.
  17. Coxeter, H. S. M. (1989). Introduction to geometry. Wiley, New York.
  18. Descartes, R. (1901). The correspondence of Descartes with the Princess Elizabeth in Adam and Tannery. Oevres de Descartes, Volume IV. Paris.
  19. Dickson, L. E. (1971). History of the theory of numbers, Volume II. Chelsea, New York.
  20. Durell, C. V. (1946). Modern geometry. Macmillan, London.
  21. Gardiner, A. D. (1987). Discovering mathematics. Clarendon Press, Oxford.
  22. Hahn, L.-S. (1994). Complex numbers and geometry. The Mathematical Association of America, Washington, DC.
  23. Jones, G. A. and Jones, J. M. (1998). Elementary number theory. Springer-Verlag, London.
  24. Larson, L. C. (1983). Problem-solving through problems. Springer-Verlag, New York.
  25. Niven, I., Zuckerman, H. S., and Montgomery, H. L. (1991). An introduction to the theory of numbers. Wiley, New York.
  26. Pedoe, D. (1970). Geometry: a comprehensive course. Dover, New York. References
  27. Rose, H. E. (1988). A course in number theory. Clarendon Press, Oxford.
  28. Salmon, G. (1912). A treatise on the analytic geometry of three dimensions. Longmans, Green and Co., London.
  29. Sastry, K. R. S. (2003). Brahmagupta quadrilaterals: a description. Crux Mathemati- corum, 29, 42.
  30. Shklarsky, D. O., Chentzov, N. N., and Yaglom, I. M. (1993). The USSR Olympiad problem book. Dover, New York.
  31. Silverman, J. H. (1997). A friendly introduction to number theory. Prentice Hall, New Jersey.
  32. Silvester, J. R. (2001). Geometry ancient and modern. Oxford University Press.