Academia.eduAcademia.edu

Outline

Sn108studied with intermediate-energy Coulomb excitation

2005, Physical Review C

Abstract

In this doctoral thesis the unstable neutron-deficient 108 Sn isotope has been studied in inverse kinematics by intermediate-energy Coulomb excitation. Previously the method has been applied to measure the energy of the first excited 2 + state and its E2 decay rate in nuclei with Z < 30 only, 108 Sn being the highest-Z nucleus studied with this method. The purpose of the in-beam gamma-spectroscopy measurement described in the thesis was to measure the unknown reduced transition probability B(E2; 0 + g.s. → 2 + 1 ) in 108 Sn. The extracted B(E2) value of 0.230 (57) e 2 b 2 has been determined relative to the known value in the stable 112 Sn isotope. The experiment has been carried out at GSI with the newly RISING/FRS experimental set-up, developed within the framework of the RISING project. Secondary beams of interest ( 108 Sn, 112 Sn) at energies of around 150 MeV/nucleon impinged on a 197 Au target of 386 mg/cm 2 thickness. The projectile fragments were selected and identified using the fragment separator (FRS) and its associated particle detectors. The calorimeter telescope (CATE) was used behind the target for the channel selection as well as for measuring the scattering angle of the outgoing fragments. Gamma rays in coincidence with projectile residues were detected by the RISING Germanium-Cluster detectors. At intermediate energies, Coulomb excitation is an experimental challenge because of intense atomic background radiation and relativistic Doppler effects that have to be accounted for. With respect to these challenges, the Sn isotopes having large transition energies and short lifetimes provide a new methodological benchmark. The experimental B(E2; 0 + g.s. → 2 + 1 ) value in 108 Sn, measured for the first time, is in agreement with recent large scale shell model calculations performed with realistic effective interactions, and can be understood phenomenologically within a generalized seniority scheme model. This thesis work can be considered as bringing more insight into the investigation of E2 correlation related to core polarization studied in the vicinity of 100 Sn.

References (148)

  1. 1 Paring and seniority in Sn isotopes . . . . . . . . . . . . . . . . . . .
  2. 2 Isomeric systematics in Sn isotopes . . . . . . . . . . . . . . . . . . .
  3. 3 Systematics of the excitation energy of the first excited 2 + state and the E2 strength B(E2; 2 + 1 → 0 + g.s. ) for the even Sn isotopes . . . . . .
  4. 1 Projectile orbit in the Coulomb field of the target nucleus . . . . . . .
  5. 2 Excitation cross sections as a function of the beam energy . . . . . .
  6. 1 Schematic layout of the RISING set-up . . . . . . . . . . . . . . . . .
  7. 2 Projectile fragmentation at relativistic energies . . . . . . . . . . . . .
  8. 3 Low energy fission process . . . . . . . . . . . . . . . . . . . . . . . .
  9. 4 High-energy or symmetric fission process . . . . . . . . . . . . . . . .
  10. 5 Comparison of the production cross sections for tin isotopes in frag- mentation and fission processes . . . . . . . . . . . . . . . . . . . . .
  11. 6 FRS in achromatic mode . . . . . . . . . . . . . . . . . . . . . . . . .
  12. 7 Isotopic separation relative to different degrader thickness . . . . . .
  13. 8 Schematic layout of the multiple sample ionization chamber . . . . .
  14. 9 Position-corrected energy loss in the MUSIC ionization chamber . . .
  15. 10 Comparison between the MUSIC energy resolution before and after the position-dependence correction . . . . . . . . . . . . . . . . . . .
  16. 11 The electronic read-out scheme of the time-of-light detectors . . . . .
  17. 12 Schematic layout of a two-stage MWPC . . . . . . . . . . . . . . . .
  18. 13 Secondary beam profile at the reaction target . . . . . . . . . . . . .
  19. 14 Secondary beam velocity distribution by comparison with the primary beam velocity distribution . . . . . . . . . . . . . . . . . . . . . . . .
  20. 15 Angular straggling dependence on target thickness . . . . . . . . . . .
  21. 16 Atomic background radiation cross section . . . . . . . . . . . . . . .
  22. 17 CATE(Si) detector motherboard . . . . . . . . . . . . . . . . . . . . .
  23. 18 Schematic drawing of a typical two-dimensional position sensitive CATE(Si) detector module . . . . . . . . . . . . . . . . . . . . . . . .
  24. 19 Distorted position pattern . . . . . . . . . . . . . . . . . . . . . . . .
  25. 20 Corrected position pattern . . . . . . . . . . . . . . . . . . . . . . . .
  26. 21 Theoretical position patterns . . . . . . . . . . . . . . . . . . . . . . .
  27. 22 CATE(Si) electronics . . . . . . . . . . . . . . . . . . . . . . . . . . .
  28. The CATE(CsI) detector array . . . . . . . . . . . . . . . . . . . . .
  29. 24 ∆E-E res correlation plot . . . . . . . . . . . . . . . . . . . . . . . . .
  30. 25 Doppler shift variation with the γ-ray emission angle in the laboratory frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
  31. 26 Uncertainty in the γ-energy measurement due to Doppler broadening 4.27 Gamma angular distribution in laboratory reference . . . . . . . . . .
  32. 28 A photograph of the RISING Ge cluster detectors . . . . . . . . . . .
  33. 29 Configuration of the 15 Ge-Cluster detectors for experiments with relativistic beams of 100 A•MeV . . . . . . . . . . . . . . . . . . . . .
  34. 30 VXI readout hardware configuration . . . . . . . . . . . . . . . . . .
  35. 31 Block diagram of the RISING DAQ system . . . . . . . . . . . . . . .
  36. 32 Time calibrator trigger (electronic scheme) . . . . . . . . . . . . . . .
  37. 33 Event synchronization online checking histograms . . . . . . . . . . .
  38. 34 Conceptual RISING trigger scheme . . . . . . . . . . . . . . . . . . .
  39. 1 108,112 Sn identification before the reaction target . . . . . . . . . . . .
  40. 2 Typical identification plot behind the reaction target using CATE . .
  41. 3 Fragment velocity distribution after the FRS . . . . . . . . . . . . . .
  42. 4 Fit of the fragment velocity dependencies . . . . . . . . . . . . . . . .
  43. 5 Velocity distributions before and after the target . . . . . . . . . . . .
  44. 6 Ge-Cluster sum time spectrum . . . . . . . . . . . . . . . . . . . . . .
  45. 7 Optimization of the prompt gamma radiation time condition . . . . .
  46. 8 Peak-to-background ratio dependence on the prompt gamma radia- tion time condition . . . . . . . . . . . . . . . . . . . . . . . . . . . .
  47. 9 Scattering angle conditions . . . . . . . . . . . . . . . . . . . . . . . .
  48. 10 "Crate-wise" data analysis results . . . . . . . . . . . . . . . . . . . .
  49. 11 Coulomb excitations γ-ray lines observed in 112,108 Sn . . . . . . . . . .
  50. 12 Four cases of background selection to determine the Coulomb excita- tion photon yield in 108 Sn and 112 Sn . . . . . . . . . . . . . . . . . . .
  51. 13 Scattering angle spectra recorded with the scaled down particles . . .
  52. predictions . . . . . . . . . . . . . . . . . . . . . . . . . .
  53. A.1 The straight-line trajectory at relativistic energies . . . . . . . . . . .
  54. B.1 Saturated Ge preamplifier signal by π + -induced particle background. . . .
  55. B.2 Schematic layout of the experimental set-up. . . . . . . . . . . . . . . . .
  56. B.3 Time-of-flight separation for beam particles measured at 1.12 GeV/c mo- mentum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
  57. B.4 Background particle identification by using BaF 2 pulse shape analysis. . .
  58. 1 Performance of an array of Ge detectors in RISING . . . . . . . . . .
  59. 2 Experimental parameters for the Coulomb excitation measurements on 108,112 Sn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
  60. 1 Determination of the Coulomb excitation photon yields in 112,108 Sn . .
  61. 1 Lowest-lying excited state energies and E2 transitions in 102-130 Sn . .
  62. B.1 Background particle measurement for energy deposit > 10 MeV in BaF 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bibliography
  63. Kurt Alder and Aage Winther. Coulomb Excitation. Academic Press, New York (1966).
  64. Kurt Alder and Aage Winther. Electromagnetic excitation theory of Coulomb excitation with heavy ions. North-Holland Publishing Com- pany, Amsterdam (1975).
  65. A.N.F. Aleixo and C.A. Bertulani. Coulomb excitation in intermediate-energy collisions. Nucl. Phys. A505, 448-470 (1989).
  66. R. Anholt et al. Atomic collisions with relativistic heavy ions. VI. Radiative processes. Phys. Rev. A33, 2270-2280 (1986).
  67. T. Aumann et al. (1995), GSI preprint GSI-95-19.
  68. A. Banu and F. Becker (2004), private communications.
  69. P. Bednarczyk (2003), private communications.
  70. C.J. Benesh, B.C. Cook, and J.P. Vary. Single nucleon removal in relativistic nuclear collisions. Phys. Rev. C40, 1198-1206 (1989).
  71. J. Benlliure, A. R. Junghans, and K.-H. Schmidt. Production of medium-weight isotopes by fragmentation in 750 A•MeV 238 U on 208 Pb collisions. Eur. Phys. J. A2, 193-198 (1998).
  72. J. Benlliure, A. R. Junghans, and K.-H. Schmidt. Shell effects and pairing correlations in fission investigated with radioactive beams. Eur. Phys. J. A13, 93-98 (2002).
  73. C.A. Bertulani and G. Baur. Electromagnetic processes in relativistic heavy ion collisions. Phys. Rep. 163, 299-408 (1988).
  74. M. Bernas et al. Projectile fission at relativistic velocities: a novel and powerful source of neutron-rich isotopes well suited for in-flight isotopic separation. Phys. Lett. B331, 19-24 (1994).
  75. M. Bernas et al. Discovery and cross-section measurement of 58 new fission products in projectile-fission of 750 A•MeV 238 U. Phys. Lett. B415, 111-116 (1997).
  76. C.A. Bertulani, C.M. Campbell, and T. Glasmacher. A computer pro- gram for nuclear scattering at intermediate and high energies. Com- puter Physics Communications 152, 317-340 (2003).
  77. P.R. Bevington and D.K. Robinson. Data Reduction and Error Anal- ysis for the Physical Sciences. WCB/McGraw-Hill (1992).
  78. L.C. Biedenharn and P.J. Brussaard. Coulomb Excitation. Clarendon Press, Oxford (1965).
  79. A. Blazhev et al. Observation of a core-excited E4 isomer in 98 Cd. Phys. Rev. C69, 064304(1-8) (2004).
  80. A. Bohr and B.R. Mottelson. Nuclear Structure (Vol. I). W.A. Ben- jamin, Inc. (1969).
  81. A. Bohr and B.R. Mottelson. Nuclear Structure (Vol. II). W.A. Ben- jamin, Inc. (1975).
  82. Richard F. Casten. Nuclear Structure from a Simple Perspective. Ox- ford University Press Inc., New York (2000).
  83. E. Caurier and G. Mart ínez-Pinedo. Frontier of Shell Model Calcula- tions. Nucl. Phys. A704, 60c-68c (2002).
  84. C. Donzaud et al. Low-energy fission investigated in reactions of 750 A•MeV 238 U-ions on 208 Pb: Isotopic distributions. Eur. Phys. J. A1, 407-426 (1998).
  85. P. Doornenbal. Doppler-Shift korrigierte -Spektroskopie nach einem Coulomb-Anregungsexperiment. Diploma thesis, Universität Frankfurt am Main (2003).
  86. C.B. Dover, L. Ludeking, and G.E. Walker (1980), Phys. Rec. C 22, pag. 2073.
  87. J. Eberth et al. Encapsulated Ge detectors:development and first tests. Nucl. Instr. and Meth. A369, 135-140 (1996).
  88. Ch. Engelmann et al. Production and identificationof heavy Ni iso- topes: evidence for the doubly magic nucleus 78 Ni. Z. Phys. A352, 351-352 (1995).
  89. T. Enqvist et al. Systematic experimental survey on projectile frag- mentation and fission induced in collisions of 238 U at 1 A•GeV with lead. Nucl. Phys. A658, 47-66 (1999).
  90. H. G. Essel, J. Hoffmann, N. Kurz, R. S. Mayer, W. Ott, and D. Schall (1996), IEEE Transactions on Nuclear Science, Vol.43, No.1, p.132.
  91. Jr. F.S. Stephens, R.M. Diamond, and I. Perlman. Multiple Coulomb Excitation in Th 232 and U 238 . Phys. Rev. Lett. 3, 435-438 (1959).
  92. A. Gadea et al. Magnetic rotation in the 105 Sn. Phys. Rev. C55, R1-R4 (1997).
  93. J.-J. Gaimard and K.-H. Schmidt. A reexamination of the abrasion- ablation model for the description of the nuclear fragmentation reac- tion. Nucl. Phys. A531, 709-745 (1991).
  94. H. Geissel et al. The GSI projectile fragment separator (FRS): a versatile magnetic system for relativistic heavy ions. Nucl. Instr. and Meth. B70, 286-297 (1992).
  95. H. Geissel and G. Münzenberg. Secondary exotic nuclear beams. Ann. Rev. Nucl. Part. Sci. 45, 163-203 (1995).
  96. J. Gerl et al. (1999), LOI of S234 experiment, GSI.
  97. T. Glasmacher. Coulomb excitation at intermediate energies. Annu. Rev. Nucl. Part. Sci. 48, 1-31 (1998).
  98. A. Gniady (2005), private communications.
  99. A.S. Goldhaber. Statistical models of fragmentation processes. Phys. Lett. B53, 306-308 (1974).
  100. A. S. Goldhaber and H. H. Heckmann. High energy interactions of nuclei. Ann. Rev. Nucl. Part. Sci. 28, 161-205 (1978).
  101. M. Gorska et al. 98 48 Cd 50 : The two-proton-hole spectrum in 100 50 Sn 50 .
  102. Phys. Rev. Lett. 79, 2415-2418 (1997).
  103. M. Gorska et al. Structure of high spin states in 104 Sn: E2 and E3 polarization of the 100 Sn core. Phys. Rev. C58, 108-115 (1998).
  104. H. Grawe. New vista of shell structure in neutron-rich exotic nuclei. Acta Phys. Pol. B. 34, 2267-2275 (2003).
  105. E. Hanelt, J. Weckenmann, K.-H. Schmidt, H.-G. Clerc, and H. Fol- ger. The Universal Energy Degrader System for the Fragment Separa- tor. Scientific report, Geselleschaft für Schwerionenforschung (1990).
  106. M. Hjorth-Jensen et al. Realistic effective interactions for nuclear systems. Phys. Rep. 261, 125-270 (1995).
  107. J. Hoffmann and N. Kurz (2002), GSI Scientific Report, p.224.
  108. A. Holt, T. Engeland, M. Hjorth-Jensen, and E. Osnes. Effective interactions and shell model studies of heavy tin isotopes. Nucl. Phys. A634, 41-56 (1998).
  109. A.V. Ignatyuk, K.K. Istekov, and G.N. Smirenkin. The role of collec- tive effects in the systematics of nuclear level densities. Sov. J. Nucl. Phys. 29, 450-454 (1979).
  110. L.S. Kisslinger and R.A. Soerensen (1960), Mat. Fys. Medd. Dan. Vid. Selsk.
  111. I. Lazarus, P. Coleman-Smith, N. Karkour, G. M. McPherson, A. Richard, and C. Ring (1992), IEEE Transactions on Nuclear Sci- ence, Vol.39, p.1352.
  112. M. Lewitowicz et al. Identification of the doubly-magic nucleus 100 Sn in the reaction 112 Sn+ nat Ni at 63 MeV/nucleon. Phys. Lett. B332, 20-24 (1994).
  113. M. Lipoglavšek et al. E2 polarization charge in 102 Sn. Phys. Lett. B440, 246-250 (1998).
  114. R. Lozeva et al. Investigation of scintillation detectors for relativistic heavy ion calorimetry. Nucl. Instr. and Meth. B204, 678-681 (2003).
  115. R. Lozeva. A new developed calorimeter telescope for identification of relativistic heavy-ion reaction channels. PhD thesis, Faculty of Physics, University of Sofia (2005).
  116. R. Machleidt, F. Sammarruca, and Y. Song. Nonlocal nature of the nuclear force and its impact on nuclear structure. Phys. Rev. C53, 1483-1487 (1996).
  117. A. Maj et al. Angular distribution of photons from the delay of the GDR in hot and rotating light Yb nuclei from exclusive experiments. Nucl. Phys. A571, 185-220 (1994).
  118. E. der Mateosion and A.W. Sunyar. Tables of angular-distribution coefficients for gamma rays of mixed multipolarities emitted by aligned nuclei. Atomic Data and Nucl. Data Tables 13, 407-462 (1974).
  119. C.I. McClelland and C. Goodman. Excitation of Heavy Nuclei by Electric Field of Low-Energy Protons. Phys. Rev. 91, 760-761 (1953).
  120. G. Münzenberg. The separation techniques for secondary beams. Nucl. Instr. and Meth. B70, 265-275 (1992).
  121. W. Nazarewicz, J. Dobaczewski, and T.R. Werner. Physics of exotic nuclear states. Phys. Scrip. T56, 9-14 (1995).
  122. T. Otsuka, R. Fujimoto, Y. Utsuno, B.A. Brown, M. Honma, and T. Mizusaki. Magic numbers in exotic nuclei and spin-isospin proper- ties of the NN interaction. Phys. Rev. Lett. 87, 082502(1-4) (2001).
  123. W.K.H. Panofsky and M. Phillips. Classical electricity and mag- netism. Addison-Wesley, Reading, Mass. (1955).
  124. D. Pelte and D. Schwalm. In-beam gamma-ray spectroscopy with heavy ions. R. Bock, Gesellschaft für Schwerionenforshung, Darm- stadt, F. R. Germany (1982).
  125. V. Pucknell (1995), The MIDAS Multi Instance Data Acquisition Sys- tem, http://npg.dl.ac.uk/MIDAS.
  126. D.C. Radford et al. Nuclear structure studies with heavy neutron-rich RIBS at the HRIBS. Nucl. Phys. A746, 83c-89c (2004).
  127. S. Raman, Jr. C. W. Nestor, and P. Tikkanen. Transition Probability from the Ground to the First-Excited 2 + State of Even-Even Nuclides. Atomic Data and Nucl. Data Tables 78, 1-129 (2001).
  128. T. Saitoh (2003), private communications.
  129. K. H. Schmidt et al. Distribution of Ir and Pt isotopes produced as fragments of 1 A•GeV 197 Au projectiles: a thermometer for peripheral nuclear collisions. Phys. Lett. B300, 313-316 (1993).
  130. R. Schneider. Production and identification of 100 Sn. Z. Phys. A348, 241-242 (1994).
  131. C. Scheidenberger and H. Geissel. Penetration of relativistic heavy ions through matter. Nucl. Instr. and Meth. B135, 25-34 (1998).
  132. W. Schwab et al. Fission of highly excited fragments from collisions of 750 A•MeV 238 U-ions on 208 Pb. Eur. Phys. J. A2, 179-191 (1998).
  133. J. Simpson. The Euroball Spectrometer. Z. Phys. A358, 139-143 (1997).
  134. J. Simpson, R. Griffiths, and K. Fayz (2002), RISING Designs Status for Steering Committee Meeting on 7/10/2002, Daresbury Labora- tory.
  135. O. Sorlin et al. 68 28 Ni 40 : Magicity versus Superfluidity. Phys. Rev. Lett. 88, (092501)1-5 (2002).
  136. H. Stelzer. Multiwire chambers with a two-stage amplification. Nucl. Instr. and Meth. A310, 103-106 (1991).
  137. A. Stolz and R. Schneider (2000), Technical Manual, Ionisation Cham- ber MUSIC80.
  138. K. Sümmerer, W. Brüchle, D. J. Morrissey, M. Schädel, B. Szweryn, and Y. Weifan. Target fragmentation of Au and Th by 2.6 GeV pro- tons. Phys. Rev. C42, 2546-2561 (1990).
  139. K. Sümmerer and B. Blank. Modified empirical parametrization of fragmentation cross sections. Phys. Rev. C61, (034607)1-10 (2000).
  140. H. Tamura et al. (2000), Phys. Rev. Lett. 84, pag. 5963.
  141. I. Tanihata. Reactions with Radioactive Ion Beams. Nucl. Phys. A654, 235c-251c (1999).
  142. O. Tarasov. Analysis of momentum distributions of projectile frag- mentation products. Nucl. Phys. A734, 536-540 (2004).
  143. H.A. Thiessen (1980), AGS proposal, 758.
  144. K.A. Ter-Martirosyan (1952), J. Exptl. Theoret. Phys. (U.S.S.R.) 22, 284.
  145. B. Voss. Entwicklung, Untersuchung und Anwendung eines position- sauflösenden Szintillationszählers zur Ortsbestimmung relativistischer schwerer Ionen. Diploma thesis, Institut für Kernphysik der Technis- chen Hochschule Darmstadt (1989).
  146. M. Wilhelm and others. The response of the Euroball Cluster detector to γ-radiation up to 10 MeV. Nucl. Instr. and Meth. A381, 462-465 (1996).
  147. A. Winther and K. Alder. Relativistic Coulom excitation. Nucl. Phys. A319, 518-532 (1979).
  148. H. J. Wollersheim et al. Rare ISotope INvestigation at GSI (RISING) using Gamma-ray Spectroscopy at Relativistic Energies. Nucl. Instr. and Meth. A537, 637-657 (2005).