Academia.eduAcademia.edu

Outline

Monovision and the Mispe rception of Motion Graphical

2019

https://doi.org/10.1016/J.CUB.2019.06.070

Abstract

Highlights d Monovision induces interocular blur differences and a mismatch in processing speed d The speed mismatch means a common lens correction can cause dramatic motion illusions d Drivers may misperceive the distance of cyclists by the width of a narrow street lane d Novel combinations of non-invasive ophthalmic interventions can abolish the illusion

References (54)

  1. Evans, B.J.W. (2007). Monovision: a review. Ophthalmic Physiol. Opt. 27, 417-439.
  2. Pulfrich, C. (1922). Die Stereoskopie im Dienste der isochromen und het- erochromen Photometrie. Naturwissenschaften 10, 553-564.
  3. Nachmias, J. (1967). Effect of exposure duration on visual contrast sensi- tivity with square-wave gratings. J. Opt. Soc. Am. 57, 421-427.
  4. Shapley, R.M., and Victor, J.D. (1978). The effect of contrast on the trans- fer properties of cat retinal ganglion cells. J. Physiol. 285, 275-298.
  5. Levi, D.M., Harwerth, R.S., and Manny, R.E. (1979). Suprathreshold spatial frequency detection and binocular interaction in strabismic and anisome- tropic amblyopia. Invest. Ophthalmol. Vis. Sci. 18, 714-725.
  6. Albrecht, D.G. (1995). Visual cortex neurons in monkey and cat: effect of contrast on the spatial and temporal phase transfer functions. Vis. Neurosci. 12, 1191-1210.
  7. Fricke, T.R., Tahhan, N., Resnikoff, S., Papas, E., Burnett, A., Ho, S.M., Naduvilath, T., and Naidoo, K.S. (2018). Global prevalence of presbyopia and vision impairment from uncorrected presbyopia: systematic review, meta-analysis, and modelling. Ophthalmology 125, 1492-1499.
  8. Charman, W.N. (2008). The eye in focus: accommodation and presbyopia. Clin. Exp. Optom. 91, 207-225.
  9. Westendorf, D.H., Blake, R., Sloane, M., and Chambers, D. (1982). Binocular summation occurs during interocular suppression. J. Exp. Psychol. Hum. Percept. Perform. 8, 81-90.
  10. Schor, C., Landsman, L., and Erickson, P. (1987). Ocular dominance and the interocular suppression of blur in monovision. Am. J. Optom. Physiol. Opt. 64, 723-730.
  11. Zheleznyak, L., Sabesan, R., Oh, J.-S., MacRae, S., and Yoon, G. (2013). Modified monovision with spherical aberration to improve presbyopic through-focus visual performance. Invest. Ophthalmol. Vis. Sci. 54, 3157-3165.
  12. Westheimer, G., and McKee, S.P. (1980). Stereoscopic acuity with defo- cused and spatially filtered retinal images. J. Opt. Soc. Am. A 70, 772-778.
  13. McGill, E., and Erickson, P. (1988). Stereopsis in presbyopes wearing monovision and simultaneous vision bifocal contact lenses. Am. J. Optom. Physiol. Opt. 65, 619-626.
  14. Pardhan, S., and Gilchrist, J. (1990). The effect of monocular defocus on binocular contrast sensitivity. Ophthalmic Physiol. Opt. 10, 33-36.
  15. Nakagawara, V.B., and V eronneau, S.J. (2000). Monovision contact lens use in the aviation environment: a report of a contact lens-related aircraft accident. Optometry 71, 390-395.
  16. Bennett, E.S. (2008). Contact lens correction of presbyopia. Clin. Exp. Optom. 91, 265-278.
  17. Burge, J., and Geisler, W.S. (2015). Optimal speed estimation in natural image movies predicts human performance. Nat. Commun. 6, 7900.
  18. Reynaud, A., and Hess, R.F. (2017). Interocular contrast difference drives illusory 3D percept. Sci. Rep. 7, 5587.
  19. Lit, A. (1949). The magnitude of the Pulfrich stereophenomenon as a func- tion of binocular differences of intensity at various levels of illumination. Am. J. Psychol. 62, 159-181.
  20. Wheatstone, C. (1838). On some remarkable, and hitherto unobserved, phenomena of binocular vision. Philos. Trans. R. Soc. Lond. 128, 371-394.
  21. Burge, J., and Geisler, W.S. (2014). Optimal disparity estimation in natural stereo images. J. Vis. 14, 1.
  22. Standing, L.G., Dodwell, P.C., and Lang, D. (1968). Dark adaptation and the pulfrich effect. Percept. Psychophys. 4, 118-120.
  23. Wilson, J.A., and Anstis, S.M. (1969). Visual delay as a function of lumi- nance. Am. J. Psychol. 82, 350-358.
  24. Rogers, B.J., and Anstis, S.M. (1972). Intensity versus adaptation and the Pulfrich stereophenomenon. Vision Res. 12, 909-928.
  25. Morgan, M.J., and Thompson, P. (1975). Apparent motion and the Pulfrich effect. Perception 4, 3-18.
  26. Carney, T., Paradiso, M.A., and Freeman, R.D. (1989). A physiological correlate of the Pulfrich effect in cortical neurons of the cat. Vision Res. 29, 155-165.
  27. Lages, M., Mamassian, P., and Graf, E.W. (2003). Spatial and temporal tuning of motion in depth. Vision Res. 43, 2861-2873.
  28. Qian, N., and Andersen, R.A. (1997). A physiological model for motion-ste- reo integration and a unified explanation of Pulfrich-like phenomena. Vision Res. 37, 1683-1698.
  29. Read, J.C.A., and Cumming, B.G. (2005). All Pulfrich-like illusions can be explained without joint encoding of motion and disparity. J. Vis. 5, 901-927.
  30. Read, J.C.A., and Cumming, B.G. (2005). The stroboscopic Pulfrich effect is not evidence for the joint encoding of motion and depth. J. Vis. 5, 417-434.
  31. Qian N, Freeman RD. Pulfrich phenomena are coded effectively by a joint motion-disparity process. Journal of Vision 9, 24.
  32. Bair, W., and Movshon, J.A. (2004). Adaptive temporal integration of mo- tion in direction-selective neurons in macaque visual cortex. J. Neurosci. 24, 7305-7323.
  33. Campbell, F.W., and Green, D.G. (1965). Optical and retinal factors affecting visual resolution. J. Physiol. 181, 576-593.
  34. Navarro, R., Artal, P., and Williams, D.R. (1993). Modulation transfer of the human eye as a function of retinal eccentricity. J. Opt. Soc. Am. A 10, 201-212.
  35. Burge, J., and Geisler, W.S. (2011). Optimal defocus estimation in individ- ual natural images. Proc. Natl. Acad. Sci. USA 108, 16849-16854.
  36. Breitmeyer, B.G., and Ganz, L. (1977). Temporal studies with flashed grat- ings: inferences about human transient and sustained channels. Vision Res. 17, 861-865.
  37. Vassilev, A., Mihaylova, M., and Bonnet, C. (2002). On the delay in pro- cessing high spatial frequency visual information: reaction time and VEP latency study of the effect of local intensity of stimulation. Vision Res. 42, 851-864.
  38. Bonnen, K., Burge, J., Yates, J., Pillow, J., and Cormack, L.K. (2015). Continuous psychophysics: target-tracking to measure visual sensitivity. J. Vis. 15, 14.
  39. Stockman, A., and Sharpe, L.T. (2006). Into the twilight zone: the complex- ities of mesopic vision and luminous efficiency. Ophthalmic Physiol. Opt. 26, 225-239.
  40. Almutairi, M.S., Altoaimi, B.H., and Bradley, A. (2018). Accommodation in early presbyopes fit with bilateral or unilateral near add. Optom. Vis. Sci. 95, 43-52.
  41. Wolffsohn, J.S., and Davies, L.N. (2019). Presbyopia: effectiveness of correction strategies. Prog. Retin. Eye Res. 68, 124-143.
  42. Schor, C., Carson, M., Peterson, G., Suzuki, J., and Erickson, P. (1989). Effects of interocular blur suppression ability on monovision task perfor- mance. J. Am. Optom. Assoc. 60, 188-192.
  43. Erickson, P., and Schor, C. (1990). Visual function with presbyopic contact lens correction. Optom. Vis. Sci. 67, 22-28.
  44. Landy, M.S., Maloney, L.T., Johnston, E.B., and Young, M. (1995). Measurement and modeling of depth cue combination: in defense of weak fusion. Vision Res. 35, 389-412.
  45. Ernst, M.O., and Banks, M.S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415, 429-433.
  46. Burge, J., and Jaini, P. (2017). Accuracy maximization analysis for sen- sory-perceptual tasks: computational improvements, filter robustness, and coding advantages for scaled additive noise. PLoS Comput. Biol. 13, e1005281.
  47. Radhakrishnan, A., Dorronsoro, C., Sawides, L., Webster, M.A., and Marcos, S. (2015). A cyclopean neural mechanism compensating for opti- cal differences between the eyes. Curr. Biol. 25, R188-R189.
  48. Wolpert, D.M., Miall, R.C., Cumming, B., and Boniface, S.J. (1993). Retinal adaptation of visual processing time delays. Vision Res. 33, 1421-1430.
  49. Plainis, S., Petratou, D., Giannakopoulou, T., Radhakrishnan, H., Pallikaris, I.G., and Charman, W.N. (2013). Interocular differences in visual latency induced by reduced-aperture monovision. Ophthalmic Physiol. Opt. 33, 123-129.
  50. Brainard, D.H. (1997). The psychophysics toolbox. Spat. Vis. 10, 433-436.
  51. Cope, J.R., Collier, S.A., Rao, M.M., Chalmers, R., Mitchell, G.L., Richdale, K., Wagner, H., Kinoshita, B.T., Lam, D.Y., Sorbara, L., et al. (2015). Contact lens wearer demographics and risk behaviors for contact lens- related eye infections-United States, 2014. MMWR Morb. Mortal. Wkly. Rep. 64, 865-870.
  52. Morgan, P.B., Woods, C.A., Tranoudis, I.O., Efron, N., Jones, L., Aighamdi, W., Nair, V., Merchan, N.L., Teufl, I./M., Grupcheva, C.N., et al. (2019). International contact lens prescribing in 2018. Contact Lens Spectr. 34, 26-32.
  53. National Eye Institute. Cataracts defined tables, https://nei.nih.gov/ eyedata/cataract/tables.
  54. Ingenito, K. (2015). Premium cataract options gain ground. Ophthalmol. Manage. 19, 42-43.