Academia.eduAcademia.edu

Outline

New 5-adic Cantor sets and fractal string

2013, SpringerPlus

https://doi.org/10.1186/2193-1801-2-654

Abstract

In the year (1879-1884), George Cantor coined few problems and consequences in the field of set theory. One of them was the Cantor ternary set as a classical example of fractals. In this paper, 5-adic Cantor one-fifth set as an example of fractal string have been introduced. Moreover, the applications of 5-adic Cantor one-fifth set in string theory have also been studied.

References (36)

  1. Beardon AF (1965) On the Hausdorff dimension of general Cantor sets. Proc Camb Phil Soc 61:679-694
  2. Cantor G (1879) Uber unendliche lineare Punktmannichfaltigkeiten, Part 1. Math Ann 15:1-7
  3. Cantor G (1880) Uber unendliche lineare Punktmannichfaltigkeiten, Part 2. Math Ann 17:355-358
  4. Cantor G (1882) Uber unendliche lineare Punktmannichfaltigkeiten, Part 3. Math Ann 20:113-121
  5. Cantor G (1883a) Uber unendliche lineare Punktmannichfaltigkeiten, Part 4. Math Ann 21:51-58
  6. Cantor G (1883b) Uber unendliche lineare Punktmannichfaltigkeiten, Part 5. Math Ann 21:545-591
  7. Cantor G (1884) Uber unendliche lineare Punktmannichfaltigkeiten, Part 6. Math Ann 23:453-488
  8. Chistyakov DV (1996) Fractal geometry of continuous embeddings of p-adic numbers into Euclidean spaces. Theor Math Phys 109:1495-1507
  9. Crilly AJ, Earnshaw RA, Jones H (1991) Fractal and Chaos. Springer-Verlag, New York
  10. Devaney RL (1992) A First Course in Chaotic Dynamical Systems. Addison Wesley Pub. Company, Inc, Holland, pp 75-79
  11. Edgar G (2008) Measure, Topology, and Fractal Geometry. Springer Verlag, New York
  12. Falconer K (1985) The Geometry of Fractal Sets. Cambridge University Press, Cambridge
  13. Fleron JF (1994) A note on the history of the Cantor set and Cantor functions. Math Mag 67:136-140
  14. Gupta VP, Jain PK (1986) Lebesgue Measure and Integration. John Wiley & Sons, New Delhi
  15. Gutfraind R, Sheintuch M, Avnir D (1990) Multifractal scaling analysis of diffusion-limited reactions with Devil's staircase and Cantor set catalytic structures. Chem Phys Lett 174(1):8-12 http://www.springerplus.com/content/2/1/654
  16. Horiguchi T, Morita T (1984a) Devil's staircase in one dimensional mapping. Physica A 126(3):328-348
  17. Horiguchi T, Morita T (1984b) Fractal dimension related to Devil's staircase for a family of piecewise linear Physica A 128(1-2):289-295
  18. Hutchinson JE (1981) Fractals and self-similarity. Indiana Math J 30:713-747
  19. Koblitz N (1984) p-adic Numbers, p-adic Analysis, and Zeta-functions. Springer-Verlag, New York Lapidus ML (1992) Spectral and fractal geometry: From the Weyl-Berry conjecture for the vibrations of fractal drums to the Riemann zeta-function. In: Bennewitz C (ed) Differential Equations and Mathematical Physics (Birmingham, 1990). Academic Press, New York, pp 151-182
  20. Lapidus ML (2008) In Search of the Riemann Zeros: Strings, fractal membranes and noncommutative spacetimes. Amer. Math. Soc, Providence, RI
  21. Lapidus ML, Hung L (2008) Nonarchimedean Cantor set and string. J Fixed Point Theory Appl 3(1):181-190
  22. Lapidus ML, Hung L (2009) Self-similar p-adic fractal strings and their complex dimensions. p-adic numbers. Ultrametric Analysis and Applications 1(2):167-180
  23. Lapidus ML, Maier H (1995) The Riemann Hypothesis and inverse spectral problems for fractal strings. J Lond Math Soc 2(52):15-34
  24. Lapidus ML, Pearse EPJ (2006) Tube formulas and complex dimensions of self-similar tilings. Acta Appl Math 112:91-136
  25. Lapidus ML, Pearse EPJ (2008) Tube formulas for self-similar fractals. In: Analysis on Graphs and Its Applications. Proc Symp Pure Math, Amer Math Soc, Providence, RI, pp 1-19
  26. Lapidus ML, Pomerance C (1993) The Riemann zeta-function and the one-dimensional Weyl-Berry conjecture for fractal drums. Proc Lond Math Soc 3(66):41-69
  27. Lapidus ML, van Frankenhuijsen M (2000) Fractal Geometry and Number Theory: Complex dimensions of fractal strings and zeros of zeta functions. Birkhh¨auser, Boston
  28. Lapidus ML, van Frankenhuijsen M (2006) Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and spectra of fractal strings. Springer Monographs in Mathematics, Springer-Verlag, New York Lee JS (1998) Periodicity on Cantor sets. Comm Korean Math Soc 13(3):595-601
  29. Hung L (2007) p-adic Fractal Strings and Their Complex Dimensions, Ph.D. Dissertation. University of California, Riverside
  30. Madore DA (2000) A first introduction to p-adic numbers. www.madore.org/~david/ math/ padics.pdf
  31. Mendes P (1999) Sum of Cantor sets: self-similarity and measure. Proc Amer Math Soc 127:3305-3308
  32. Peitgen HO, Jürgens H, Saupe D (2004) Chaos and Fractals: New Frontiers of Science, 2nd edition. Springer Verlag, New York
  33. Rani M, Prasad S (2010) Superior Cantor sets and superior Devil's staircases. Int J Artif Life Res 1(1):78-84
  34. Robert AM (2000) A Course in p-adic Analysis, Graduate Texts in Mathematics. Springer Verlag, New York
  35. Schikhof WH (1984) Ultrametric calculus: An introduction to p-adic analysis, Cambridge Studies in Advanced Mathematics. Cambridge Univ. Press, Cambridge Shaver C (2010) An Exploration of the Cantor set, Mathematics Seminar. http://www. rose-hulman.edu/mathjournal/archives/2010/vol11-n1/paper1/v11n1-1pd.pdf
  36. Vladimirov VS, Volovich IV, Zelenov EI (1994) p-Adic Analysis and Mathematical Physics. World Scientific Publ, Singapore doi:10.1186/2193-1801-2-654 Cite this article as: Kumar et al.: New 5-adic Cantor sets and fractal string. SpringerPlus 2013 2:654.