Academia.eduAcademia.edu

Outline

Ends for subsemigroups of finite index

2014, Semigroup Forum

https://doi.org/10.1007/S00233-014-9660-6

Abstract

In this paper we study ends of finitely generated semigroups. The ends we are working with are the ends of the undirected graphs of Cayley graphs of finitely generated semigroups. We prove that the number of ends is preserved for subsemigroups of finite Rees index, and prove the same result for finite Green index subsemigroups of cancellative semigroups.

References (12)

  1. A. J. Cain, R. D. Gray and N. Ruškuc, Green index in semigroups: generators, presentations, and automatic structures, Semigroup Forum 85 (2012) 448-476.
  2. A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups (Vol. I), Mathematical Surveys, American Mathematical Society, Providence, R.I. (1961).
  3. S. Craik, R. Gray, V. Kilibarda, J. D. Mitchell, N. Ruškuc, Ends of semigroups, preprint.
  4. R. D. Gray, V. Maltcev, J. D. Mitchell and N. Ruškuc, Ideals, finiteness conditions and Green index for subsemigroups, to appear in Glasgow Math. Journal.
  5. R. D. Gray and N. Ruškuc, Green index and finiteness conditions for semigroups, J. Algebra 320 (2008), no. 8, 3145-3164.
  6. J. M. Howie, An embedding theorem with amalgamation for cancellative semigroups, Proc. Glasgow Math. Assoc. 6 (1963) 19-26.
  7. D. A. Jackson and V. Kilibarda, Ends for monoids and semigroups, J. Austral. Math. Soc. 87 (2009), 101-127.
  8. R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer-Verlag (1977).
  9. N. Ruškuc, On large subsemigroups and finiteness conditions of semigroups, Proc. London Math. Soc. 76 (1998), no. 2, 383-405.
  10. J. P. Serre, Trees, Corrected 2nd printing of the 1980 English translation. Springer Mono- graphs in Mathematics. Springer-Verlag, Berlin (2003).
  11. E. Specker, Die erste Cohomologiegruppe von Überlagerungen und Homotopie-Eigenschaften dreidimensionaler Mannigfaltigkeiten, Comment. Math. Helv. 23 (1949) 303-333.
  12. A. Yamamura, A class of inverse monoids acting on ordered forests, J. Algebra 281 (2004), no. 1, 15-67.