Academia.eduAcademia.edu

Outline

The Sexual Brain

1995, The Journal of Nervous and Mental Disease

https://doi.org/10.1097/00005053-199501000-00013

Abstract

We show that numerical approximations of Kolmogorov complexity (K) of graphs and networks capture some group-theoretic and topological properties of empirical networks, ranging from metabolic to social networks, and of small synthetic networks that we have produced. That K and the size of the group of automorphisms of a graph are correlated opens up interesting connections to problems in computational geometry, and thus connects several measures and concepts from complexity science. We derive these results via two different Kolmogorov complexity approximation methods applied to the adjacency matrices of the graphs and networks. The methods used are the traditional lossless compression approach to Kolmogorov complexity, and a normalised version of a Block Decomposition Method (BDM) based on algorithmic probability theory.

Key takeaways
sparkles

AI

  1. Kolmogorov complexity (K) effectively captures topological properties of graphs and networks.
  2. The Block Decomposition Method (BDM) approximates K using adjacency matrices of graphs.
  3. Numerical analysis shows correlation between K and the size of automorphism groups in graphs.
  4. Real-world networks (200-1000 nodes) exhibit similar K and automorphism group size relationships as synthetic networks.
  5. Future research may explore K's behavior in larger networks and directed graphs.

References (44)

  1. M. Newman, Networks: An introduction, Oxford Univer- sity Press, Inc., 2010.
  2. M. Newman, A.-L. Barabasi, D. J. Watts, The structure and dynamics of networks, Princeton University Press, 2011.
  3. D. Bonchev, G. A. Buck, Quantitative measures of net- work complexity, in: Complexity in Chemistry, Biology, and Ecology, Vol. 7(2), Danail Bonchev and Dennis Rou- vray, 2005, pp. 191-235.
  4. J. Kim, T. Wilhelm, What is a complex graph?, Physica A: Statistical Mechanics and its Applications 387 (11) (2008) 2637-2652.
  5. A. Mowshowitz, M. Dehmer, Entropy and the complexity of graphs revisited, Entropy 14 (3) (2012) 559-570.
  6. C. Adami, J. Qian, M. Rupp, A. Hintze, Information content of colored motifs in complex networks, Artificial Life 17 (4) (2011) 375-390.
  7. A. Mowshowitz, V. Mitsou, Entropy, orbits, and spectra of graphs, Analysis of Complex Networks.
  8. Y. Xiao, M. Xiong, W. Wang, H. Wang, Emergence of symmetry in complex networks, Physical Review E 77 (6) (2008) 066108.
  9. Y. Xiao, B. D. MacArthur, H. Wang, M. Xiong, W. Wang, Network quotients: Structural skeletons of complex systems, Physical Review E 78 (4) (2008) 046102.
  10. H. Buhrman, M. Li, J. Tromp, P. Vitányi, Kolmogorov random graphs and the incompressibility method, SIAM Journal on Computing 29 (2) (1999) 590-599.
  11. H. Zenil, F. Soler-Toscano, J.-P. Delahaye, N. Gauvrit, Two-dimensional Kolmogorov complexity and validation of the coding theorem method by compressibility, arXiv 1212:6745 [cs.CC].
  12. J. Hopcroft, R. Tarjan, Efficient planarity testing, J. ACM 21 (4) (1974) 549-568.
  13. R. Read, D. Corneil, The graph isomorphism disease, Journal of Graph Theory 1 (1) (1977) 339-363.
  14. K. Baskerville, M. Paczuski, Subgraph ensembles and motif discovery using an alternative heuristic for graph isomorphism., Phys Rev E Stat Nonlin Soft Matter Phys 74 (5 Pt 1) (2006) 051903.
  15. K. Baskerville, P. Grassberger, M. Paczuski, Graph ani- mals, subgraph sampling, and motif search in large net- works, Physical Review E 76 (3) (2007) 36107.
  16. M. Girvan, M. E. J. Newman, Community structure in social and biological networks, Proceedings of the Na- tional Academy of Sciences 99 (12) (2002) 7821-7826. doi:10.1073/pnas.122653799.
  17. A. N. Kolmogorov, Three approaches to the quantitative definition of information, Problems of Information and Transmission 1 (1) (1965) 1-7.
  18. G. J. Chaitin, On the length of programs for computing finite binary sequences: Statistical considerations, Jour- nal of the ACM 16 (1) (1969) 145-159.
  19. M. Li, P. Vitányi, An Introduction to Kolmogorov Com- plexity and Its Applications, Springer, Heidelberg, 2008.
  20. The group of valid programs forms a prefix-free set (no element is a prefix of any other, a property necessary to keep 0 < m(s) < 1.) For details see [24].
  21. R. J. Solomonoff, A formal theory of inductive inference: Parts 1 and 2, Information and Control 7 (1-22) (1964) 224-254.
  22. L. Levin, Laws of information conservation (non-growth) and aspects of the foundation of probability theory, Prob- lems in Form. Transmission 10 (1974) 206-210.
  23. T. M. Cover, J. A. Thomas, Information Theory, 2nd Edition, J. Wiley and Sons.
  24. C. S. Calude, Information and Randomness, Springer, 2002.
  25. J.-P. Delahaye, H. Zenil, On the Kolmogorov-Chaitin complexity for short sequences, in: C. Calude (Ed.), Randomness and Complexity: From Leibniz to Chaitin, World Scientific, 2007.
  26. J.-P. Delahaye, H. Zenil, Numerical evaluation of the complexity of short strings: A glance into the innermost structure of algorithmic randomness, Applied Math. and Comp 219 (2012) 63-77.
  27. H. Zenil, Une approche expérimentale à la théorie algo- rithmique de la complexité, dissertation in fulfilment of the degree of doctor in computer science, Ph.D. thesis, Université de Lille 1 (June 2011).
  28. J.-P. Delahaye, H. Zenil, Numerical evaluation of the complexity of short strings: A glance into the innermost structure of algorithmic randomness, Applied Mathemat- ics and Computation 219 (2012) 63-77.
  29. H. Zenil, J.-P. Delahaye, On the algorithmic nature of the world, in: Information and Computation, G. Dodig- Crnkovic and M. Burgin (eds), World Scientific Publish- ing CompanyWorld Scientific Publishing Company, 2010.
  30. F. Soler-Toscano, H. Zenil, J.-P. Delahaye, N. Gauvrit, Calculating Kolmogorov complexity from the frequency output distributions of small Turing machines, arXiv 1211:1302 [cs.IT].
  31. F. Soler-Toscano, H. Zenil, J.-P. Delahaye, N. Gauvrit, Correspondence and independence of numerical evalua- tions of algorithmic information measures, Computabil- ity (in press).
  32. H. Zenil, E. Villarreal-Zapata, Asymptotic behaviour and ratios of complexity in cellular automata rule spaces, Journal of Bifurcation and Chaos (2013) (in press).
  33. T. Radò, On non-computable functions, Bell System Technical Journal 41 (3) (1962) 877-884.
  34. A. H. Brady, The determination of the value of Rado's noncomputable function Sigma(k) for four-state turing machines, Mathematics of Computation 40, 162 (1983) 647-665.
  35. C. Langton, Studying artificial life with cellular au- tomata, Physica D: Nonlinear Phenomena 22 (1-3) (1986) 120-149.
  36. M. Gell-Mann, The Quark and the Jaguar: Adventures in the Simple and the Complex, Abacus; New edition edition, Paris, 1995.
  37. M. A. Dehmer M, A history of graph entropy measures, Information Sciences 181 (2011) 5778.
  38. M. Dehmer, L. Sivakumar, Recent developments in quan- titative graph theory: Information inequalities for net- works, PLoS One 7(2) (2012) 5778.
  39. R. K. Standish, Complexity of networks, in: Recent Ad- vances in Artificial Life, Abbass et al. (eds), World Sci- entific Publishing CompanyWorld Scientific Publishing Company, 2005, p. 253.
  40. H. Katebi, K. A. Sakallah, I. L. Markov, Conflict an- ticipation in the search for graph automorphisms, in: Int'l Conf. on Logic for Programming, LPAR, Merida, Venezuela., 2012.
  41. R. Albert, A.-L. Barabási, Statistical mechanics of com- plex networks, Reviews of modern physics 74 (1) (2002) 47.
  42. D. J. Watts, S. H. Strogatz, Collective dynamics of 'small-world' networks, Nature 393 (6684) (1998) 409- 10.
  43. H. Jeong, B. Tombor, R. Albert, Z. Oltvai, A.-L. Barabási, The large-scale organization of metabolic net- works, Nature 407 (2000) 651.
  44. D. Johnson, M. T. (eds), Cliques, Coloring, and Sat- isfiability: Second DIMACS Implementation Challenge, Vol. 26, AMS, Providence, RI, USA, 1996.