Spontaneous Emergence of Computation in Network Cascades
2022
Abstract
Neuronal network computation and computation by avalanche supporting networks are of interest to the fields of physics, computer science (computation theory as well as statistical or machine learning) and neuroscience. Here we show that computation of complex Boolean functions arises spontaneously in threshold networks as a function of connectivity and antagonism (inhibition), computed by logic automata (motifs) in the form of computational cascades. We explain the emergent inverse relationship between the computational complexity of the motifs and their rankordering by function probabilities due to motifs, and its relationship to symmetry in function space. We also show that the optimal fraction of inhibition observed here supports results in computational neuroscience, relating to optimal information processing.
References (44)
- P. W. Anderson. More is different: broken symmetry and the nature of the hierarchical structure of science. Science, 177(4047):393-396, 1972.
- J. M. Beggs. The criticality hypothesis: how local cortical networks might optimize information process- ing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1864):329-343, 2008.
- A. Ben-Naim. A farewell to entropy: Statistical thermodynamics based on information: S. World Scientific, 2008.
- D. R. Brooks, E. O. Wiley, and D. Brooks. Evolution as entropy. University of Chicago Press Chicago, 1988.
- V. Capano, H. J. Herrmann, and L. De Arcangelis. Optimal percentage of inhibitory synapses in multi-task learning. Scientific reports, 5(1):1-5, 2015.
- K. Christensen and N. R. Moloney. Complexity and criticality, volume 1. World Scientific Publishing Company, 2005.
- J. Conway et al. The game of life. Scientific American, 223(4):4, 1970.
- J. M. Dubbey and J. M. Dubbey. The mathematical work of Charles Babbage. Cambridge University Press, 2004.
- D. Easley, J. Kleinberg, et al. Networks, crowds, and markets, volume 8. Cambridge university press Cambridge, 2010.
- M. Granovetter. Threshold models of collective behavior. American journal of sociology, 83(6):1420-1443, 1978.
- J. Hesse and T. Gross. Self-organized criticality as a fundamental property of neural systems. Frontiers in systems neuroscience, 8:166, 2014.
- M. Jalili and M. Perc. Information cascades in complex networks. Journal of Complex Networks, 5(5):665-693, 2017.
- E. T. Jaynes. Information theory and statistical mechanics. Physical review, 106(4):620, 1957.
- H. J. Jensen. What is critical about criticality: in praise of the correlation function. Journal of Physics: Complexity, 2(3):032002, 2021.
- D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the spread of influence through a social network. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 137-146, 2003.
- K. H. Knuth. Information physics: The new frontier. In AIP Conference Proceedings, volume 1305, pages 3-19. American Institute of Physics, 2011.
- L. Landau. Broken symmetry and phase transitions. Phys Z Sowjetunion, 1937, 11, 26, 1937.
- R. Landauer. Irreversibility and heat generation in the computing process. IBM journal of research and development, 5(3):183-191, 1961.
- J. T. Lizier, M. Prokopenko, and A. Y. Zomaya. A framework for the local information dynamics of distributed computation in complex systems. In Guided self-organization: inception, pages 115-158. Springer, 2014.
- S. Lloyd. The computational universe. Information and the nature of reality: From physics to metaphysics, pages 92-103, 2010.
- S. Lloyd. The universe as quantum computer. A Computable Universe: Understanding and exploring Nature as computation, pages 567-581, 2013.
- C. W. Lynn and D. S. Bassett. The physics of brain network structure, function and control. Nature Reviews Physics, 1(5):318-332, 2019.
- P. Massobrio, L. de Arcangelis, V. Pasquale, H. J. Jensen, and D. Plenz. Criticality as a signature of healthy neural systems. Frontiers in systems neuroscience, 9:22, 2015.
- R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network motifs: simple building blocks of complex networks. Science, 298(5594):824-827, 2002.
- M. Newman. Networks. Oxford university press, 2018.
- S. Perseguers, M. Lewenstein, A. Acín, and J. I. Cirac. Quantum random networks. Nature Physics, 6(7):539-543, 2010.
- R. Rojas. Neural networks: a systematic introduction. Springer Science & Business Media, 2013.
- J. M. Sakoda. The checkerboard model of social interaction. The Journal of Mathematical Sociology, 1(1):119-132, 1971.
- J. E. Savage. Models of computation, volume 136. Addison-Wesley Reading, MA, 1998.
- T. C. Schelling. Dynamic models of segregation. Journal of mathematical sociology, 1(2):143-186, 1971.
- R. Schrodinger, E. Schrödinger, and E. S. Dinger. What is life?: With mind and matter and autobiographical sketches. Cambridge university press, 1992.
- T. J. Sejnowski, C. Koch, and P. S. Churchland. Computational neuroscience. Science, 241(4871):1299-1306, 1988.
- C. E. Shannon. Mathematical theory of the differential analyzer. Journal of Mathematics and Physics, 20(1- 4):337-354, 1941.
- C. E. Shannon. A mathematical theory of communication. The Bell system technical journal, 27(3):379-423, 1948.
- W. L. Shew and D. Plenz. The functional benefits of criticality in the cortex. The neuroscientist, 19(1):88-100, 2013.
- G. Tononi, O. Sporns, and G. M. Edelman. A measure for brain complexity: relating functional segregation and integration in the nervous system. Proceedings of the National Academy of Sciences, 91(11):5033-5037, 1994.
- A. M. Turing et al. On computable numbers, with an application to the entscheidungsproblem. J. of Math, 58(345-363):5, 1936.
- J. Von Neumann. The general and logical theory of automata, cerebral mechanisms in behavior. the hixon symposium. New York: John Wiley&Sons, 1951.
- J. Von Neumann. Probabilistic logics and the synthesis of reliable organisms from unreliable components. Automata Studies, pages 43-98, 1956.
- D. Watts. A simple model of global cascades on random networks. Proceedings of the National Academy of Sciences of the United States of America, 99(9):5766-5771, 2002.
- J. A. Wheeler. Recent thinking about the nature of the physical world: It from bit a. Annals of the New York Academy of Sciences, 655(1):349-364, 1992.
- J. A. Wheeler. Information, physics, quantum: The search for links. CRC Press, 2018.
- G. Wilkerson and S. Moschoyiannis. Universal boolean logic in cascading networks. In International conference on complex networks and their applications, pages 601-611. Springer, 2019.
- S. Wolfram. A new kind of science, volume 5. Wolfram media Champaign, IL, 2002.