Academia.eduAcademia.edu

Outline

Physical Properties of Multi-wall Nanotubes

Topics in Applied Physics

https://doi.org/10.1007/3-540-39947-X_13

Abstract

After a short presentation on the preparation and structural properties of Multi-Wall carbon NanoTubes (MWNTs), their outstanding electronic, magnetic, mechanical and field emitting properties are reviewed. The manifestation of mesoscopic transport properties in MWNTs is illustrated through the Aharonov-Bohm effect, universal conductance fluctuations, the weak localization effect and its power-law temperature/field dependences. Measurements of the Young's modulus of individual nanotubes show the high strength of tubes having well-graphitized walls. Electron Spin Resonance (ESR) measurements indicate the low-dimensional character of the electronic states even for relatively large diameter tubes. The conducting nature of the tubes, together with their large curvature tip structure, make them excellent electron and light emitters suitable for applications.

FAQs

sparkles

AI

What unique features do multi-wall carbon nanotubes offer compared to single-wall nanotubes?add

The significant advantages of MWNTs include better mechanical stability and reduced requirements for high magnetic fields in quantum interference studies, enabling phenomena like the Aharonov-Bohm effect at lower fields (around 10 T for MWNTs compared to 600 T for SWNTs). Additionally, they allow for efficient load transfer in composites without compromising the structural integrity of the internal tubes.

How do multi-wall carbon nanotubes compare in electrical conductivity to single-wall carbon nanotubes?add

Research indicates that while MWNTs exhibit features of Luttinger liquid behavior, they conduct current predominantly through the outermost tube, achieving a positive Hall coefficient indicative of hole doping. This leads to a distinct conduction mechanism compared to SWNTs, which display a more complex phase diagram and potentially different electrical properties.

What production methods yield high-quality multi-wall carbon nanotubes?add

The arc discharge method generally produces MWNTs with superior structural quality due to high synthesis temperatures, yielding an average Young's modulus of approximately 810 GPa, compared to lower values from catalytic growth methods. Techniques such as controlled oxidation and surfactant-assisted purification improve yield and preserve structural integrity.

What role do defects play in the mechanical properties of multi-wall carbon nanotubes?add

Defects in MWNTs, particularly those formed during catalytic growth, negatively affect their elastic modulus, which decreases as disorder increases; highly defective MWNTs exhibit moduli significantly lower than their arc-grown counterparts. AFM studies correlate lower moduli with coffee-cup structured defects affecting load distribution.

How does the Aharonov-Bohm effect manifest in multi-wall carbon nanotubes?add

In MWNTs, Aharonov-Bohm oscillations have been observed, confirming that electric current primarily flows through the outer tube up to 70 K, allowing for large coherence lengths exceeding the radius of the tube. This phenomenon differs from single-wall nanotubes, where such quantum interferences require significantly higher magnetic fields.

References (165)

  1. S. Iijima, Nature 354, 56 (1991) 329, 330, 338
  2. D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Nature 363, 605 (1993) 329, 331
  3. S. Iijima, T. Ichihashi, Nature 363, 603 (1993) 329, 331
  4. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tománek, J. E. Fis- cher, R. E. Smalley, Science 273, 483 (1996) 329, 331
  5. W. Krätschmer, L. D. Lamb, K. Foristopoulos, D. R. Huffman, Nature 347, 354 (1990) 330
  6. T. W. Ebbesen, P. M. Ajayan, Nature 358, 220 (1992) 330
  7. L. Forró, J.-P. Salvetat, J.-M. Bonard, R. Bacsa, N. H. Thomson, S. Garaj, L. Thien-Nga, R. Gaál, A. J. Kulik, B. Ruzicka, L. Degiorgi, A. Bachtold, C. Schönenberger, S. Pekker, K. Hernadi, in Science and Application of Nano- tubes, D. Tománek, R. J. Enbody (Eds.) (Kluwer Academic/Plenum Publish- ers, New York 1999) p. 297 331, 333, 335, 338, 371, 372, 379, 380, 382, 383
  8. J-M. Bonard, T. Stora, J.-P. Salvetat, F. Meier, T. Stökli, C. Düsch, L. Forró, W. A. de Heer, A. Chatelain, Adv. Mater. 9, 827 (1997) 330, 331, 333, 372, 375
  9. W. Bacsa, unpublished 334, 338
  10. C. S. Tsang, Y. K. Chen, P. J. F. Harris, M. L. Green, Nature 372, 159 (1994) 334
  11. H. Hiura, T. W. Ebbesen, K. Tanigaki, Adv. Mater. 7, 275 (1995) 334
  12. C. Journet, P. Bernier, Appl. Phys. A 67, 1 (1998) 331
  13. A. Fonseca, K. Hernadi, P. Piedigrosso, J.-F. Colomer, K. Mukhopadhyay, R. Doome, S. Lazarescu, L. P. Biro, P. Lambin, P. A. Thiry, D. Bernaerts, J. B. Nagy, Appl. Phys. A 67, 11 (1998) 331
  14. M. Endo, K. Takeuchi, K. Kobori, K. Takahashi, H. Kroto, A. Sarkar, Carbon 33, 873 (1995) 331
  15. M. S. Dresselhaus, G. Dresselhaus, K. Sugihara, I. L. Spain, H. A. Goldberg, in Graphite Fibers and Filaments. Springer Ser. in Mater. Sci. 5 (Springer, Berlin, Heidelberg 1988) 331, 341, 342, 379
  16. M. S. Dresselhaus, M. Endo, chapter of this volume 331, 333, 338, 339, 341, 342, 380, 383
  17. X. B. Zhang, X. F. Zhang, D. Bernaerts, G. Van Tendeloo, S. Amelinckx, J. Van Landuyt, V. Ivanov, J. B. Nagy, Ph. Lambin, A. A. Lucas, Europhys. Lett. 27, 141 (1994) 331
  18. V. Ivanov, J. B. Nagy, Ph. Lambin, A. A. Lucas, X. B. Zhang, X. F. Zhang, D. Bernaerts, G. Van Tendeloo, S. Amelinckx J. Van Lunduyt, J. Chemical Physics Letters 223, 329 (1994) 331
  19. A. Fonseca, K. Hernadi, J. B. Nagy, P. Lambin, A. Lucas, Synth. Met. 77, 235 (1996) 331
  20. N. Demoncy, O. Stephan, N. Brun, C. Colliex, A. Loiseau, H. Pascard, Synth. Met. 103, 2380 (1999) 331, 335, 336
  21. S. Amelinckx, D. Bernaerts, G. van Tendeloo, J. van Landuyt, A. A. Lucas, M. Mathot, P. Lambin, in Physics and Chemistry of Fullerenes and Deriva- tives, Proceedings of the International Winterschool on Electronic Properties of Novel Materials, Kirchberg 1995, H. Kuzmany, J. Fink, M. Mehring, S. Roth (Eds.) (World Scientific, Singapore 1995) p. 515 331, 334, 363
  22. S. Amelinckx, D. Bernaerts, X. B. Zhang, G. Van Tendeloo, J. Van Landuyt, Science 267, 1334-8 (1995) 331
  23. H. Kind, J.-M. Bonard, C. Emmenegger, L.-O. Nilsson, K. Hernadi, E. Maillard-Schaller, L. Schlapbach, L. Forró, K. Kern, Adv. Mater. 11, 1285 (1999) 331, 332
  24. N. Yao, V. Lordi, S. X. C. Ma, E. Dujardin, A. Krishnan, M. M. J. Treacy, T. W. Ebbesen, J. Mater. Res. 13, 2432-2437 (1998) 332
  25. J.-M. Bonard, J.-P. Salvetat, T. Stökli, L. Forró, A. Chatelain, Appl. Phys. A 69, 245 (1999) 332
  26. M. S. Dresselhaus, G. Dresselhaus, R. Saito, Phys. Rev. B 45, 6234 (1992) 333
  27. M. S. Dresselhaus, G. Dresselhaus, R. Saito, Carbon 33, 883 (1995) 333
  28. S. G. Louie, chapter in this volume 333, 363
  29. M. S. Dresselhaus, Ph. Avouris, chapter in this volume 333, 339
  30. N. B. Brandt, Y. G. Chudinov, Graphite and its Compounds (North-Holland, Amsterdam 1988) 333
  31. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, R. E. Smalley, Nature 318, 162 (1985) 334
  32. S. Iijima, Solid State Phys. 27, 39-45 (1992) 334
  33. V. H. Crespi, N. G. Chopra, M. L. Cohen, A. Zettl, S. G. Louie, Phys. Rev. B 54, 5927 335
  34. K. L. Lu, R. M. Lago, Y. K. Chen, M. L. H. Green, P. J. F. Harris, S. C. Tsang, Carbon 34, 814 (1996) 335
  35. J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rodriguex-Macia, D. T. Colbert, R. E. Smalley, Science 280, 1253-1256. (1998) 335
  36. C. Guerret-Plecourt, Y. Le Bouar, A. Loiseau, H. Pascard, Nature 372, 761 (1994) 335
  37. P. Ajayan, O. Zhou, chapter in this volume 335, 336, 370, 371, 383
  38. A. Loiseau, N. Demoncy, O. Stéphan, C. Colliex, H. Pascard, in D. Tománek, R. J. Enbody (Eds.) (Kluwer Academic/Plenum Publishers, New York 1999) 335, 336
  39. P. M. Ajayan, T. W. Ebbesen, T. Ichihashi, S. Iijima, K. Tanigaki, H. Hiura, Nature 362, 522 (1993) 336
  40. S. C. Tsang, P. J. F. Harris, M. L. H. Green, Nature, 362, 520 (1993) 336
  41. E. Djuradin, T. W. Ebbesen, H. Hiura, K. Tanigaki, Science 265, 1850 (1994) 336
  42. Y. K. Chen, M. L. H. Green, S. C. Tsang, Chem. Commun. 2489 (1996) 336
  43. D. Ugarte, A. Chatelain, W. A. de Heer, Science 274, 1897 (1996) 336, 337
  44. C. Schönenberger, A. Bachtold, C. Strunk, J.-P. Salvetat, L. Forró, Appl. Phys. A 69 283 (1999) 337, 338, 345, 350, 353, 354, 355, 357, 358, 359, 360, 364
  45. S. Frank, P. Poncharal, Z. L. Wang, W. A. de Heer, Science 280, 1744 (1998) 337, 346, 348, 349, 354, 364
  46. A. Bachtold, C. Strunk, J. P. Salvetat, J. M. Bonard, L. Forró, T. Nussbaumer, C. Schönenberger, Nature 397, 673 (1999) 337, 345, 348, 349, 352, 356, 357, 359, 364
  47. R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London 1998) 338, 339, 340, 343, 363
  48. C. Dekker, Phys. Today, May issue, 52, 22-28 (1999) 338
  49. J. W. Mintmire, B. I. Dunlap, C. T. White, Phys. Rev. Lett. 68, 631-634 (1992) 339
  50. T. Hamada, M. Furuyama, T. Tomioka, M. Endo, J. Mater. Res. 7, 1178-1188 (1992). ibid., 2612-2620 339
  51. R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus, Appl. Phys. Lett. 60, 2204 (1992) 339
  52. R. Saito, G. Dresselhaus, M. S. Dresselhaus, J. Appl. Phys. 73, 494 (1993) 339
  53. M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, New York 1996) 339, 375
  54. P. R. Wallace, Phys. Rev. 71, 622 (1947) 339, 340
  55. R. Saito, H. Kataura, chapter of this volume 340, 343
  56. R. Saito, G. Dresselhaus, M. S. Dresselhaus, Phys. Rev. B 61, 2981 (2000) 340
  57. G. S. Painter, D. E. Ellis, Phys. Rev. B 1, 4747 (1970) 340
  58. D. P. DiVincenzo E. J. Mele, Phys. Rev. 29 1685 (1984) 340, 343
  59. J. W. Mintmire, D. H. Robertson, C. T. White, J. Phys. Chem. Solids 54, 1835 (1993) 340
  60. R. Bacon, J. Appl. Phys. 31, 283-290 (1960) 341
  61. L. Piraux, J. Mater. Res. 5, 1285 (1990) 342
  62. H. Ajiki, T. Ando, J. Phys. Soc. Jpn. 62, 2470-2480 (1993). Erratum: ibid p. 4267 343, 356
  63. J. W. G. Wildöer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker, Nature (London) 391, 59-62 (1998) 343, 360, 363, 373
  64. T. W. Odom, J. L. Huang, P. Kim, C. M. Lieber, Nature (London) 391, 62-64 (1998) 343, 360, 363
  65. Young-Kyun Kwon, D. Tománek, Phys. Rev. B 58, R16001 (1998) 345
  66. Ph. Lambin, V. Meunier, A. Rubio, in Science and Application of Nanotubes, D. Tománek, R. J. Enbody (Eds.) (Kluwer Academic/Plenum Publishers, New York 1999) p. 17 345
  67. C.-H. Kiang, M. Endo, P. M. Ajayan, G. Dresselhaus, M. S. Dresselhaus, Phys. Rev. Lett. 81, 1869 (1998) 345
  68. S. N. Song, X. K. Wang, R. P. H. Chang, J. B. Ketterson, Phys. Rev. Lett. 72, 697 (1994) 345, 346, 347, 358, 364
  69. L. Langer, V. Bayot, E. Grivei, J. P. Issi, J. P. Heremans, C. H. Olk, L. Stock- man, C. Van Haesendonck, Y. Bruynseraede, Phys. Rev. Lett. 76, 479 (1996) 345, 346, 349, 358, 359, 364
  70. G. Bergmann, Phys. Rep. 107, 1 (1984) 345, 356, 358, 359
  71. B. L. Altshuler, A. G. Aharonov, M. E. Gershenson, Y. V. Sharvin, in So- viet Scientific Reviews, Section A: Physics Reviews, I. M. Khalatnikov (Ed.) (Harwood Academic, New York 1987) 345, 356, 358, 359
  72. B. L. Altshuler, P. A. Lee, Phys. Today, Dec. issue, 36 (1988) 345, 356, 358, 359
  73. A. Aharonov, Phys. Scr. T49, 28 (1993) 345, 356, 358, 359
  74. S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Geerligs, C. Dekker, Nature 386, 474 (1997) 345, 352
  75. M. Bockrath, D. H. Cobden, P. L. McEuen, N. G. Chopra, A. Zettl, A. Thess, R. E. Smalley, Science 275, 1922 (1997) 345, 352
  76. A. Bachtold, C. Strunk, C. Schönenberger, J. P. Salvetat, L. Forró, Proceed- ings of the XIIth International Winterschool on Electronic Properties of Novel Materials, H. Kuzmany, J. Fink, M. Mehring, S. Roth (Eds.) (AIP, New York 1998) 345, 358, 359
  77. A. Yu. Kasumov, R. Deblock, M. Kociak, B. Reulet, H. Bouchiat, I. I. Khodos, Yu. B. Gorbatov, V. T. Volkov, C. Journet, M. Burghard, Science 284, 1508 (1999) 346
  78. K. Tsukagoshi, B. W. Alphenaar, H. Ago, Nature 401, 572 (1999) 346
  79. H. Dai, E. W. Wong, C. M. Lieber, Science 272, 523-526 (1994) 346
  80. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tománek, J. E. Fis- cher, R. E. Smalley, Science 273, 483-487 (1996) 346
  81. A. Yu. Kasumov, H. Bouchiat, B. Reulet, O. Stephan, I. I. Khodos, Yu. B. Gor- batov, C. Colliex, Europhys. Lett. 43, 89 (1998) 346, 349
  82. P. J. de Pablo, E. Graugnard, B. Walsh, R. P. Andres, S. Datta, R. Reifen- berger, Appl. Phys. Lett. 74, 323 (1999) 346
  83. P. J. de Pablo, S. Howell, S. Crittenden, B. Walsh, E. Graugnard, R. Reifen- berger, Appl. Phys. Lett. 75, 3941 (1999) 346
  84. H. R. Shea, R. Martel, T. Hertel, T. Schmidt, Ph. Avouris, Microel. Eng., 46, 101 (1999) 346
  85. J. Kong, H. T. Soh, A. M. Cassell, C. F. Quate, H. Dai, Nature 395, 878 (1998) 346
  86. G. Baumgartner, M. Carrard, L. Zuppiroli, W. Basca, W. A. de Heer, L. Forró, Phys. Rev. B 55, 6704 (1997) 348
  87. J. Hone, I. Ellwood, M. Muno, Ari Mizel, Marvin L. Cohen, A. Zettl, An- drew G. Rinzler, R. E. Smalley, Phys. Rev. Lett. 80, 1042 (1998) 348
  88. W. Yi, L. Lu, Zhang Dian-lin, Z. W. Pan, S. S. Xie, Phys. Rev. B 59, R9015 (1999) 348
  89. L. Grigorian, G. U. Sumanasekera, A. L. Loper, S. Fang, J. L. Allen, P. C. Ek- lund, Phys. Rev. B 59, R11309 (1999) 348
  90. P. G. Collins, K. Bradley, M. Ishigami, A. Zettl, Science 287, 1801 (2000) 349
  91. G. U. Sumanasekera, C. Adu, S. Fang, P. C. Eklund, Phys. Rev. Lett. (2000). submitted 349, 364
  92. Li Lu, Wie Yi, Z. Pan, S. S. Xie, Bull. APS 45, 414 (2000) 349
  93. T. W. Ebbesen, H. Hiura, M. E. Bisher, M. M. J. Treacy, J. L. Shreeve-Keyer, R. C. Haushalter, Adv. Mater. 8, 155 (1996) 349
  94. A. Bachtold, M. Henny, C. Terrier, C. Strunk, C. Schönenberger, J.-P. Salve- tat, J.-M. Bonard, L. Forró, Appl. Phys. Lett. 73, 274 (1998) 350
  95. Y. Imry, Physics of mesoscopic systems in Directions in Condensed Matter Physics, G. Grinstein, G. Mazenko, (Eds.) (World Scientific, Singapore 1986) 351
  96. A. Bachtold, C. Terrier, M. Kruger, M. Henny, T. Hoss, C. Strunk, R. Huber, H. Birk, U. Staufer, C. Schönenberger, Microel. Engin. 41-42, 571 1998). 351, 355, 364
  97. M. Buitelaar, A. Bachtold, C. Schönenberger, L. Forró, unpublished 352, 353, 362, 363
  98. H. Grabert, M. H. Devoret, Single Charge Tunneling: Coulomb Blockade Phe- nomena in Nanostructures (Plenum, New York 1992) 352
  99. B. L. Altshuler, Pis'ma Zh. Eksp. Teor. Fiz. 41, 530 (1985) [JETP Lett. 41, 648 (1985)] 354
  100. P. A. Lee, A. D. Stone, Phys. Rev. Lett. 55, 1622 (1985) 354
  101. P. A. Lee, A. D. Stone, H. Fukuyama, Phys. Rev. B 35, 1039 (1987) 354
  102. P. Delaney, M. Di Ventra, S. T. Pantelides, Appl. Phys. Lett. 75, 3787 (1999) 354
  103. Walt de Heer et al., unpublished 355
  104. Z. Yao, C. L. Kane, C. Dekker, Phys. Rev. Lett. 84, 2941 (2000). 355
  105. W. Tian, S. Datta, Phys. Rev. B 49, 5097 (1994) 356, 360
  106. A. G. Aharonov, Yu. V. Sharvin, Rev. Mod. Phys. 59, 755 (1987) 357
  107. B. L. Altshuler, A. G. Aharonov, B. Z. Spivak, Pis'ma Zh. Eksp. Teor. Fiz. 33, 101 (1981) [JETP Lett. 33, 94 (1981)] 357
  108. M. Baxendale, V. Z. Mordkovich, S. Yoshimura, R. P. H. Chang, Phys. Rev. B 56, 2161 (1997) 358
  109. A. Fujiwara et al., Proceedings of the International Winterschool on Electronic Properties of Novel Materials 1997, H. Kuzmany, J. Fink, M. Mehring, S. Roth (Eds.) (AIP, New York 1997) 358
  110. G. T. Kim, E. S. Choi, D. C. Kim, D. S. Suh, Y. W. Park, K. Liu, G. Duesberg, S. Roth, Phys. Rev. B 58, 16064 (1998) 358
  111. B. L. Altshuler, A. G. Aharonov, D. E. Khmelnitsky, Solid State Commun. 39, 619 (1981) 359
  112. P. A. Lee, T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985) 359
  113. B. L. Altshuler, A. G. Aharonov, in Electron-Electron Interactions in Dis- ordered Systems, M. Pollak, A. L. Efros, (Eds.) (North-Holland, Amsterdam 1984) pp. 1-153 359
  114. H. Fukuyama, in Electron-Electron Interactions in Disordered Systems, M. Pollak, A. L. Efros, (Eds.) (North-Holland, Amsterdam 1984) pp. 1-153 359
  115. R. Egger, A. O. Gogolin, Phys. Rev. Lett. 79, 5082 (1997) 359
  116. C. Kane, L. Balents, M. P. A. Fisher, Phys. Rev. Lett. 79, 5086 (1997) 359
  117. A. Komnik, R. Egger, Phys. Rev. Lett. 80, 2881 (1998) 359
  118. A. A. Odintsov, H. Yoshioka, Phys. Rev. Lett. 82 374 (1999) 359
  119. R. Egger, A. O. Gogolin, Eur. Phys. J. B 3, 281 (1998) 359, 362
  120. R. Egger, Phys. Rev. Lett. 83, 5547 (1999) 359, 362
  121. C. T. White, J. W. Mintmire, Nature 394, 29 (1998) 360
  122. J. W. Mintmire, C. T. White, Phys. Rev. Lett. 81, 2506 (1998) 360
  123. A. Bachtold, C. Schönenberger, L. Forró, unpublished 361
  124. M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, L. Balents, P. L. McEuen, Nature 397, 598 (1999) 362, 363
  125. For a review see: M. P. A. Fisher, L. Glazman, in Mesoscopic Electron Trans- port, L. L. Sohn, L. P. Kouwenhoven, G. Schön, (Eds.), NATO ASI Ser. E: Appl. Sci. 345 (Kluwer Academic, Dordrecht 1997) 362
  126. Z. Yao, H. W. Ch. Postma, L. Balents, C. Dekker, Nature 402, 273 (1999) 363
  127. A. Bachtold, private communication 363
  128. E. Graugnard, B. Walsh, P. J. de Pablo, R. P. Andres, S. Datta, R. Reifen- berger, Bull. APS March 45, 487 (2000) 363
  129. D. Tománek, R. J. Enbody (Kluwer Academic/Plenum Publishers, New York 1999) 363
  130. D. L. Carroll, P. Redlich, P. M. Ajayan, J.-C. Charlier, X. Blase, A. De Vita, R. Car, Phys. Rev. Lett. 78, 2811 (1997) 363, 364, 373
  131. M. Kociak, A. Yu Kasumov, S. Gu'eron, B. Reulet, L. Vaccarini, I. I. Khodos, Yu, B. Gorbatov, V. T. Volkov, H. Bouchiat, unpublished 365
  132. G. Wagoner, Phys. Rev. 118, 647 (1960) 365, 366, 369
  133. Y. Yafet, Solid State Phys. 14, 1 (1963) 365, 366
  134. R. J. Elliott, Phys. Rev. 96, 266 (1954) 365, 366
  135. O. Chauvet, L. Forró, W. Bacsa, D Chatelain, D. Ugarte, W. De Heer, Phys. Rev. B 52, R6963 (1995) 366
  136. F. Beuneu, P. Monod, Phys. Rev. B 18, 2422 (1978) 367
  137. Y. Tomkiewicz, E. M. Engler, T. D. Schultz, Phys. Rev. Lett. 35, 456 (1975) 367
  138. A. N. Bloch, T. F. Carruthers, T. O. Poehler D. O. Cowan, in Chemistry and Physics of One-Dimensional Metals, H. J. Keller (Ed.) (Plenum, New York 1977 ) p. 47 367
  139. L. Forró, J. R. Cooper, G. Sekretarczyk, M. Krupski, K. Kamarás, J. Phys. (Paris) 48, 413 (1987) 368
  140. J.-P. Salvetat, J.-M. Bonard, L. Forró, unpublished 368, 369, 370
  141. L. S. Singer, G. Wagoner, J. Chem. Phys. 37, 1812 (1962) 369
  142. G. Baumgartner, M. Carrard, L. Zuppiroli, W. Bacsa, W. A. de Heer, L. Forró, Phys. Rev. B 55 , 6704 (1997) 369
  143. A. G. Rinzler, J. H. Hafner, P. Nikolaev L. Lou, S. G. Kim, D. Tománek, P. Nordlander, D. T. Colbert, R. E. Smalley, Science 269, 1550 (1995) 370, 371, 373
  144. W. A. de Heer, A. Chatelain, D. Ugarte, Science 270, 1179 (1995) 370, 373
  145. W. A. de Heer, J.-M. Bonard, Kai Fauth, A. Chatelain, L. Forró, D. Ugarte, Adv. Mater. 9, 87-9 (1997) 370
  146. J.-M. Bonard, T. Stökli, F. Meier, W. A. de Heer, A. Chatelain, J.-P. Salvetat, L. Forró, Phys. Rev. Lett. 81, 1441 (1998) 371, 373, 374
  147. J-M. Bonard, F. Meier, T. Stöckli, L. Forró, A. Chatelain, W. de Heer, J.-P. Salvetat, L. Forró, Ultramicroscopy 77, 7 (1998) 371, 372
  148. P. Kim, T. W. Odom, J.-L. Huang, C. M. Lieber, Phys. Rev. Lett. 82, 1225 (1999) 373
  149. A. De Vita, J.-C. Charlier, X. Blase, R. Car: Appl. Phys. A 68, 283 (1999) 373
  150. M. Fransen: Towards high brightness, monochromatic electron sources, Dis- sertation , Technical University Delft (1999) 374
  151. R. Coratger et al, preprint 375, 376, 377
  152. R. Berndt, R. Gaisch, J. K. Gimzewski, B. Reihl, R. R. Schittler, W. D. Schnei- der, M. Tschudy, Science 262, 1425 (1993) 375
  153. S. Frank, P. Poncharal, Z. L. Wang, W. A. de Heer, Science 280, 1744 (1998) 376
  154. M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson, Nature 381, 678 (1996) 376, 379
  155. E. W. Wong, P. E. Sheehan, C. M. Lieber, Science 277, 1971 (1997) 376, 379
  156. A. Krishnan,. E. Dujardin, T. W. Ebbesen, P. N. Yianilos, M. M. J. Treacy, Phys. Rev. B 58 (20) 14013 (1998) 376
  157. J.-P. Salvetat, G. A. D. Briggs, J.-M. Bonard, R. R. Basca, A. J. Kulik, T. Stöckli, N. A. Burnham, L. Forró, Phys. Rev. Lett. 82 944 (1999) 376, 378, 379, 380
  158. J.-P. Salvetat, A. J. Kulik, J.-M. Bonard, G. A. D. Briggs, T. Stöckli, K. Méténier, S. Bonnamy, F. Béguin, N. A. Burnham, L. Forró, Adv. Mater. 11 (2) 161 (1999) 376, 378, 379, 382
  159. P. Poncharal, Z. L. Wang, D. Ugarte, W. A. de Heer, Science 283, 1513 (1999) 376, 379, 381, 382
  160. D. A. Walters, L. M. Ericson, M. J. Casavant, J. Liu, D. T. Colbert, K. A. Smith, R. E. Smalley, Appl. Phys. Lett. 74, 3803 (1999) 376
  161. L. S. Schadler, S. C. Giannaris, P. M. Ajayan, Appl. Phys. Lett. 73, 3842 (1998) 377
  162. J.-P. Salvetat, J.-M. Bonard, N. H. Thomson, A. J. Kulik, L. Forró, W. Benoit, L. Zuppiroli, Appl. Phys. A 69, 255 (1999) 380, 381
  163. F. Beuneu, C. L'Huillier, J.-P. Salvetat, J.-M. Bonnard, L. Forró, Phys. Rev. B 59, 5945 (1999) 381
  164. Min-Feng Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff, Science 287, 637 (2000) 383
  165. J. Cumings, A. Zettl, Nature 406, 586 (2000) 384