Academia.eduAcademia.edu

Outline

Image Segmentation Based on a Two-Dimensional Histogram

2011, Image Segmentation

https://doi.org/10.5772/15316

Abstract
sparkles

AI

The paper discusses image segmentation utilizing a two-dimensional histogram approach, particularly in the context of HSV color space. It outlines various segmentation methods, comparing the effectiveness of 1D and 3D histograms, and highlighting the advantages of the 2D histogram in addressing issues like data sparseness and computational complexity. The segmentation algorithm based on this 2D-histogram is detailed, supported by experimental results showcasing its effectiveness.

References (28)

  1. References
  2. Abutaleb, A. S.(1989). Automatic thresholding of gray-level pictures using two- dimensional entropy. Journal of Computer Vision, Graphic and Image Process, Vol. 47, (1989) 22-32
  3. Borsotti, M.; Campadelli, P. & Schettini, R.(1998). Quantitative evaluation of color image segmentation results. Patt. Recogn. Lett., Vol.19, (1998) 741-747
  4. Bouda, B.; Masmoudi, L. & Aboutajdine, D (2008) . Cvvefm : Cubical voxels and virtual electric field model for detection in color images. Signal Processing, Elsevier, Vol. 88, No. 4, (2008) 905-915
  5. Chaerle, L. & van der Straeten, D.(2001). Seeing is believing: imaging techniques to monitor plant health. Biochim. Biophys. Acta, Vol. 1519,(2001) 153-166
  6. Chen, C. & Wu, W. (2005). Color pattern recognition with the multi-channel non-zero-order joint transform correlator based on the HSV color space. Optics Communications, Vol.244 (2005) 51-59
  7. Cheng, H.D. ; Jiang, X.H.; Sun, Y.& Wang, J.(2001). Color image segmentation: advances and prospects. Pattern Recognition, Vol.34, No.6, (2001) 2259-2281
  8. Clément, A. & Vigouroux, B. ( 2001). Un histogramme compact pour l'analyse d'images multi-composantes, Actes du 18e Colloque sur le Traitement du Signal et des Images: GRETSI'01, pp.305-307, Centre de congres Pierre Baudis,2001 Vol. 1, Toulouse, France Clément, A. & Vigouroux, B.(2003). Unsupervised segmentation of scenes containing vegetation (Forsythia) and soil by hierarchical analysis of bi-dimensional histograms. Patt. Recogn. Lett., Vol. 24,(2003) 1951-1957
  9. Clément,A.(2002). Algorithmes et outils informatiques pour l'analyse d'images couleur. Application à l'étude de coupes histologiques de baies de raisin en microscopie optique, PhD thesis, Université d'Angers.
  10. Gillet, A.; Macaire, L.; Botte-Lecocq, C. & Postaire, J. G.(2002). Color image segmentation by analysis of 3D histogram with fuzzy morphological filters, in: Springer-Verlag Editor, Fuzzy Filters for Image Processing-Studies in Fuzziness and Soft Computing, pp. 154-177, New York
  11. Govindjee & Nedbal, G. L. (2000). Seeing is believing. Photosynthetica, Vol. 38, (2000) 481- 482
  12. Kurugollu, F.; Sankur, B. & Harmanci, A.(2001). Color image segmentation using histogram multithresholding and fusion. Image and Vision Comput., Vol. 19, (2001) 915-928.
  13. Lezoray, O. & Cardot, H. (2003). Hybrid color image segmentation using 2D histogram clustering and region merging, Proc. Int. Conf. on Image and signal processing: ICISP'03, pp. 22-29, Agadir, 2003, Maroc
  14. Lichtenthaler, H. K.(1996). Vegetation stress: an introduction to the stress concept in plants. J. Plant Physiol., Vol. 148,(1996) 4-14
  15. Macaire, L.; Vandenbroucke, N. & Postaire, J. G.(2006). Color image segmentation by analysis of subset connectedness and color homogeneity properties. Comput. Vision Image Understand., Vol.102, (2006) 105-116
  16. Maxwell, B.A. & Shafer, S.A. (1996). Physics-based segmentation: looking beyond color, Proceedings of Image Understanding Workshop, pp. 867-878, Palm Springs, CA February 1996, ARPA, USA
  17. Penuelas, J. & Filella, I.(1998). Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends Plant Sci., Vol.3, (1998)151 -156
  18. Qi, X. J.; Qi, J. & Wu, Y. J. (2007). RootLM: a simple color image analysis program for length measurement of primary roots in Arabidopsis. Plant Root, Vol. 1, (2007) 10-16
  19. Schettini, R. (1993). A segmentation algorithm for color images. Pattern Recognition Letters, Vol.14, (1993) 499-506
  20. Sezgin, M. & Sankur, B. (2004). Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging, Vol.13, No.1,(2004) 146-165
  21. Sural, S.; Qian, G. & Pramanik, S.(2002). Segmentation and histogram eneration using the HSV color space for image retrieval, Proc. Int. Conf. on Image processing: ICIP'02, Rochester, NY, USA, IEEE, Vol. 2, pp. II589-II592
  22. Tezara, W.; Mitchell, V. J.; Driscoll, S. D. & Lawlor, D. W. (1999). Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature, Vol. 401, (1999) 914-917
  23. Tremeau, A. & Borel, N. (1998). A region growing and merging algorithm to color segmentation, Pattern Recognition, Vol.30, No.7, (1998)1191-1203
  24. Uchiyama, T. & Arbib, M.(1994). Color image segmentation using competitive learning. IEEE Trans. Pattern Anal. Mach. Intell., 16, (1994) 1197-1206
  25. Zennouhi, R. & Masmoudi, LH. (2009). A new 2D histogram scheme for color image segmentation. The Imaging Science Journal, Vol. 57, (2009) 260-265
  26. Zhang, H.; Fritts, J. E. & Goldman, S. A.(2008). Image segmentation evaluation: A survey of unsupervised methods. Computer Vision and Image Understanding, Vol. 110, (2008) 260-280
  27. Zhang, Y. F. & Zhang, Y. (2006). Another Method of Building 2D Entropy to Realize Automatic Segmentation. Journal of Physics Conference Series, Vol. 48, (2006) 303- 307
  28. Zugaj, D. & Lattuati, V. (1998). A new approach of color images segmentation based on fusing region and edge segmentation outputs. Pattern Recognition, Vol. 31, No.2,(1998) 105-113