Academia.eduAcademia.edu

Outline

On the average sensitivity of the weighted sum function

2012, Information Processing Letters

https://doi.org/10.1016/J.IPL.2011.11.001

Abstract

In this paper we obtain the bound on the average sensitivity of the weighted sum function. This confirms a conjecture of Shparlinski. We also compute the weights of the weighted sum functions and show that they are almost balanced.

References (15)

  1. R.C. Baker, G. Harman and J. Pintz, The difference between consecutive primes, II, Proc. London Math. Soc., 83 (2001) 532-562.
  2. A. Bernasconi, Sensitivity vs. block sensitivity (an average-case study), Information Process- ing Letters, 59 (1996), 151-157.
  3. A. Bernasconi, C. Damm and I. Shparlinski, The average sensitivity of square-freeness, Comput. Complexity 9 (2000), 39-51.
  4. R. B. Boppana, The average sensitivity of bounded-depth circuits, Information Processing Letters, 63 (1997), 257-261.
  5. H. Buhrman and R. de Wolf, Complexity measures and decision tree complexity: a survey, Complexity and logic (Vienna, 1998), Theoret. Comput. Sci. 288 (2002), 21-43.
  6. D. Canright, S. Gangopadhyay, S. Maitra and P. Stanica, Laced Boolean functions and subset sum problems in finite fields, Discrete Applied Mathematics, 159 (2011), 1059-1069.
  7. J. Li and D. Wan, On the subset sum problem over finite fields, Finite Fields & Applications, 14 (2008), 911-929.
  8. J. Li and D. Wan, A new sieve for distinct coordinate counting, Science in China Series A, 53 (2010), 2351-2362.
  9. J. Li and D. Wan, Counting subsets of finite Ablelian groups, to appear in JCTA.
  10. D. Rubinstein, Sensitivity vs. block sensitivity of Boolean functions, Combinatorica 15 (1995), 297-299.
  11. P. Savicky and S. Zak, A read-once lower bound and a (1, +k)-hierarchy for branching pro- grams, Theoret. Comput. Sci. 238 (2000), 347-362.
  12. M. Sauerhoff and D. Sieling, Quantum branching programs and space-bounded nonuniform quantum complexity, Theoret. Comput. Sci., 334 (2005), 177-225.
  13. M. Sauerhoff, Randomness versus nondeterminism for read-once and read-k branching pro- grams, STACS 2003, 307-318, Lecture Notes in Comput. Sci., 2607, Springer, Berlin, 2003.
  14. Y. Shi, Lower bounds of quantum black-box complexity and degree of approximating polyno- mials by influence of Boolean variables, Information Processing Letters, 75 (2000), 79-83.
  15. Igor. E. Shparlinski, Bounds on the Fourier coefficients of the weighted sum function, Inform. Process. Lett. 103 (2007), 83-87.