Academia.eduAcademia.edu

Outline

Description Logics with Fuzzy Concrete Domains

2005

Abstract

We present a fuzzy version of description logics with concrete domains. Main features are: (i) concept constructors are based on t-norm, t-conorm, negation and implication; (ii) concrete domains are fuzzy sets; (iii) fuzzy modifiers are allowed; and (iv) the reasoning algorithm is based on a mixture of completion rules and bounded mixed integer programming.

References (20)

  1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementa- tion, and Applications. Cambridge University Press, 2003.
  2. R. J. Brachman and H. J. Levesque. The tractabil- ity of subsumption in frame-based description lan- guages. In AAAI-84, pages 34-37, 1984.
  3. R. Hähnle. Advanced many-valued logics. In Hand- book of Philosophical Logic, 2nd Edition, Volume 2. Kluwer, Dordrecht, Holland, 2001.
  4. Petr Hájek. Metamathematics of Fuzzy Logic. Kluwer, 1998.
  5. Petr Hájek. Making fuzzy description logics more expressive. Fuzzy Sets and Systems, 2005. To ap- pear.
  6. S. Hölldobler, H. Störr, and T. D. Khang. The Subsumption Problem of the Fuzzy Description Logic ALC F H . In Proc. of Int. Conf. on Informa- tion Processing and Managment of Uncertainty in Knowledge-Based Systems, (IPMU-04), 2004.
  7. I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to OWL: The mak- ing of a web ontology language. Journal of Web Semantics, 1(1):7-26, 2003.
  8. R. G. Jeroslow. Logic-based Decision Support. Mixed Integer Model Formulation. Elsevier, Ams- terdam, Holland, 1989.
  9. C. Lutz. Description logics with concrete domains-a survey. In Advances in Modal Logics Volume 4. King's College Publications, 2003.
  10. C. Meghini, F. Sebastiani, and U. Straccia. A model of multimedia information retrieval. Journal of the ACM, 48(5):909-970, 2001.
  11. B. Nebel. Reasoning and revision in hybrid repre- sentation systems. Springer, Heidelberg, FRG, 1990.
  12. H. Salkin and M. Kamlesh. Foundations of Integer Programming. North-Holland, 1988.
  13. D. Sánchez and G.B. Tettamanzi. Generaliz- ing quantification in fuzzy description logics. In Proc. 8th Fuzzy Days in Dortmund, 2004.
  14. M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions with complements. Artificial Intelligence, 48:1-26, 1991.
  15. U. Straccia. Reasoning within fuzzy description logics. Journal of Artificial Intelligence Research, 14:137-166, 2001.
  16. U. Straccia. Transforming fuzzy description log- ics into classical description logics. In Proc. of the European Conf. on Logics in Artificial Intelligence (JELIA-04), LNCS 3229, 2004. Springer Verlag.
  17. Umberto Straccia. Towards a fuzzy description logic for the semantic web (preliminary report). In European Semantic Web Conference (ESWC-05), LNCS 3532, 2005. Springer Verlag.
  18. C. Tresp and R. Molitor. A description logic for vague knowledge. In Proc. of the European Conf. on Artificial Intelligence (ECAI-98), Brighton (Eng- land), 1998.
  19. J. Yen. Generalizing term subsumption languages to fuzzy logic. In IJCAI-91, pages 472-477, 1991.
  20. L. A. Zadeh. Fuzzy sets. Information and Control, 8(3):338-353, 1965.