Academia.eduAcademia.edu

Outline

Conducting Polymers for Pseudocapacitive Energy Storage

2016, Chemistry of Materials

https://doi.org/10.1021/ACS.CHEMMATER.6B01762

Abstract

Developing energy storage devices to be utilized within a rapidly advancing energy market requires a multipronged approach whereby material synthesis and engineering fundamentals combine to enable technological advances. These devices should be able to store a large amount of energy in a small, lightweight package, and should be able to distribute that energy quickly for high rate applications. Pseudocapacitors made from conducting polymers, which store charge via rapid reduction and oxidation reactions, are a particularly promising candidate. This perspective explores conductivity and charge storage mechanisms in conducting polymers and describes how synthetic strategies can affect these properties. We further develop chemical correlations that have been shown to enhance the performance of pseudocapacitive electrochemical capacitors fabricated from conducting polymers. Important device engineering strategies for improving the lifetime and applicability of pseudocapacitors are also discussed.

References (85)

  1. Fanara, A.; Clark, R.; Duff, R.; Polad, M. How Small Devices are Having a Big Impact on U.S. Utility Bills; Environmental Protection Agency and ICF International: Washington, DC, 2006. (2) Global and regional trends in residential electricity consumption. Gadgets and Gigawatts [Online], 2009. https://www.iea.org/ publications/freepublications/publication/gigawatts2009.pdf (ac- cessed December 24, 2015).
  2. Electric Power Monthly; Data for October 2015; U.S. Energy Information Administration: Washington, DC, 2015.
  3. Stocker, T. F.; Qin, D.; Plattner, G.-K.; Alexander, L. V.; Allen, S. K.; Bindoff, N. L.; Breón, F.-M.; Church, J. A.; Cubasch, U.; Emori, S., et al. The Physical Science Basis; Intergovernmental Panel on Climate Change: New York, NY, 2013.
  4. Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845-854.
  5. Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366-377.
  6. Rauda, I. E.; Augustyn, V.; Dunn, B.; Tolbert, S. H. Enhancing Pseudocapacitive Charge Storage in Polymer Templated Mesoporous Materials. Acc. Chem. Res. 2013, 46, 1113-1124.
  7. Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 2014, 7, 1597-1614.
  8. Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Kluwer Academic/ Plenum Publisher: New York, NY, 1999.
  9. Snook, G. A.; Kao, P.; Best, A. S. Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 2011, 196, 1- 12.
  10. Simon, P.; Gogotsi, Y.; Dunn, B. Where Do Batteries End and Supercapacitors Begin? Science 2014, 343, 1210-1211.
  11. Conway, B. E. Transition from Supercapacitor to Battery Behavior in Electrochemical Energy-Storage. J. Electrochem. Soc. 1991, 138, 1539-1548.
  12. Conway, B. E.; Birss, V.; Wojtowicz, J. The role and utilization of pseudocapacitance for energy storage by supercapacitors. J. Power Sources 1997, 66, 1-14.
  13. Abdelhamid, M. E.; O'Mullane, A. P.; Snook, G. A. Storing energy in plastics: a review on conducting polymers & their role in electrochemical energy storage. RSC Adv. 2015, 5, 11611-11626.
  14. Liu, T.; Finn, L.; Yu, M.; Wang, H.; Zhai, T.; Lu, X.; Tong, Y.; Li, Y. Polyaniline and Polypyrrole Pseudocapacitor Electrodes with Excellent Cycling Stability. Nano Lett. 2014, 14, 2522-2527.
  15. Hao, G.-P.; Hippauf, F.; Oschatz, M.; Wisser, F. M.; Leifert, A.; Nickel, W.; Mohamed-Noriega, N.; Zheng, Z.; Kaskel, S. Stretchable and Semitransparent Conductive Hybrid Hydrogels for Flexible Supercapacitors. ACS Nano 2014, 8, 7138-7146.
  16. Coclite, A. M.; Howden, R. M.; Borrelli, D. C.; Petruczok, C. D.; Yang, R.; Yaguë, J. L.; Ugur, A.; Chen, N.; Lee, S.; Jo, W. J.; et al. 25th Anniversary Article: CVD Polymers: A New Paradigm for Surface Modification and Device Fabrication. Adv. Mater. 2013, 25, 5392- 5422.
  17. Luo, X.; Wang, J.; Dooner, M.; Clarke, J. Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl. Energy 2015, 137, 511-536.
  18. Guo, D.; Lai, L.; Cao, A.; Liu, H.; Dou, S.; Ma, J. Nanoarrays: design, preparation and supercapacitor applications. RSC Adv. 2015, 5, 55856-55869.
  19. Yuan, L.; Yao, B.; Hu, B.; Huo, K.; Chen, W.; Zhou, J. Polypyrrole-coated paper for flexible solid-state energy storage. Energy Environ. Sci. 2013, 6, 470-476.
  20. Conway, B. E.; Pell, W. G. Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. J. Solid State Electrochem. 2003, 7, 637-644.
  21. Gu, G.; Yushin, G. Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene. WIREs Energy Environ. 2014, 3, 424-473.
  22. Liu, Y. C.; Xie, K. Y. Nano-Array Electrodes for Next- Generation Lithium-Ion Batteries. Sci. Adv. Mater. 2014, 6, 863-874.
  23. D'Arcy, J. M.; El-Kady, M. F.; Khine, P. P.; Zhang, L.; Lee, S. H.; Davis, N. R.; Liu, D. S.; Yeung, M. T.; Kim, S. Y.; Turner, C. L.; et al. Vapor-Phase Polymerization of Nanofibrillar Poly(3,4-ethylenediox- ythiophene) for Supercapacitors. ACS Nano 2014, 8, 1500-1510.
  24. MacDiarmid, A. G.; Mammone, R. J.; Kaner, R. B.; Porter, S. J.; Pethig, R.; Heeger, A. J.; Rosseinsky, D. R. The concept of 'doping' of conducting polymers: the role of reduction potentials. Philos. Trans. R. Soc., A 1985, 314, 3-15.
  25. Bredas, J. L.; Street, G. B. Polarons, Bipolarons, and Solitons in Conducting Polymers. Acc. Chem. Res. 1985, 18, 309-315.
  26. Kaner, R. B.; MacDiarmid, A. G. Plastics that Conduct Electricity. Sci. Am. 1988, 258, 106-111.
  27. Mitchell, G. R.; Davis, F. J.; Legge, C. H. The Effect of Dopant Molecules on the Molecular Order of Electrically-Conducting Films of Polypyrrole. Synth. Met. 1988, 26, 247-257.
  28. Nevius, M. S.; Conrad, M.; Wang, F.; Celis, A.; Nair, M. N.; Taleb-Ibrahimi, A.; Tejeda, A.; Conrad, E. H. Semiconducting Graphene from Highly Ordered Substrate Interactions. Phys. Rev. Lett. 2015, 115, 136802.
  29. Shi, W.; Zhao, T.; Xi, J.; Wang, D.; Shuai, Z. Unravelling Doping Effects on PEDOT at the Molecular Level: From Geometry to Thermoelectric Transport Properties. J. Am. Chem. Soc. 2015, 137, 12929-12938.
  30. Cho, S. H.; Song, K. T.; Lee, J. Y. Handbook of Conducting Polymers: Conjugated Polymers Processing and Applications, 3rd ed.; CRC Press: Boca Raton, FL, 2007.
  31. Groenendaal, L. B.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J. R. Poly(3,4-Ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future. Adv. Mater. 2000, 12, 481-494.
  32. Lee, S. H.; Lee, S.; Ryu, H. W.; Park, H.; Kim, Y. S.; Kim, J. H. Synthesis and In situ Doping of Highly Conductive Polypyrrole Nanocomplexes with Binary Acids. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 2329-2336.
  33. Cho, B.; Park, K. S.; Baek, J.; Oh, H. S.; Lee, Y.-E. K.; Sung, M. M. Single-Crystal Poly(3,4-ethylenedioxythiophene) Nanowires with Ultrahigh Conductivity. Nano Lett. 2014, 14, 3321-3327.
  34. Chiang, C. K.; Druy, M. A.; Gau, S. C.; Heeger, A. J.; Louis, E. J.; MacDiarmid, A. G.; Park, Y. W.; Shirakawa, H. Synthesis of Highly Conducting Films of Derivatives of Polyacetylene, (CH) x . J. Am. Chem. Soc. 1978, 100, 1013-1015.
  35. Heeger, A. J. Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials. J. Phys. Chem. B 2001, 105, 8475-8491.
  36. MacDiarmid, A. G.; Epstein, A. J. The concept of secondary doping as applied to polyaniline. Synth. Met. 1994, 65, 103-116.
  37. Lee, K.; Cho, S.; Park, S. H.; Heeger, A. J.; Lee, C.-W.; Lee, S.- H. Metallic transport in polyaniline. Nature 2006, 441, 65-68.
  38. Bubnova, O.; Khan, Z. U.; Wang, H.; Braun, S.; Evans, D. R.; Fabretto, M.; Hojati-Talemi, P.; Dagnelund, D.; Arlin, J.-B.; Geerts, Y. H.; et al. Semi-Metallic Polymers. Nat. Mater. 2014, 13, 190-194.
  39. Martin, D. C.; Wu, J.; Shaw, C. M.; King, Z.; Spanninga, S. A.; Richardson-Burns, S.; Hendricks, J.; Yang, J. The Morphology of Poly(3,4-Ethylenedioxythiophene). Polym. Rev. (Philadelphia, PA, U. S.) 2010, 50, 340-384.
  40. Howden, R. M. Conjugated CVD Polymers: Conductors and Semiconductors. In CVD Polymers; Gleason, K. K., Ed.; Wiley-VCH: Weinheim, Germany, 2015; Chapter 11, p 234.
  41. Elschner, A.; Kirchmeyer, S.; Lovenich, W.; Merker, U.; Reuter, K. PEDOT: Principles and Applications of an Intrinsically Conductive Polymer; CRC Press: Boca Raton, FL, 2011.
  42. Sapurina, I.; Stejskal, J. The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polym. Int. 2008, 57, 1295-1325.
  43. Hou, Z.; Yang, Q.; Lu, H.; Li, Y. Towards enhanced electrochemical capacitance with self-assembled synthesis of poly- (pyrrole-co-o-toluidine) nanoparticles. J. Appl. Polym. Sci. 2016, 133, No. 42995 , DOI: 10.1002/app.42995.
  44. Rodriguez, J.; Grande, H.-J.; Otero, T. F. Polypyrroles: from basic research to technological applications. In Handbook of Organic Conductive Molecules and Polymers; Nalwa, H. S., Ed.; Wiley: New York, NY, 1997; Chapter 10, p 415.
  45. Pandolfo, T.; Ruiz, V.; Sivakkumar, S.; Nerkar, J. General Properties of Electrochemical Capacitors. In Supercapacitors: Materials, Systems and Applications; Beǵuin, F., Frackowiak, E., Eds.; Wiley-VCH: Weinheim, Germany, 2013; Chapter 2, p 87.
  46. Rudge, A.; Davey, J.; Raistrick, I.; Gottesfeld, S.; Ferraris, J. P. Conducting Polymers as Active Materials in Electrochemical Capacitors. J. Power Sources 1994, 47, 89-107.
  47. Christinelli, W. A.; Goncalves, R.; Pereira, E. C. A new generation of electrochemical supercapacitors based on layer-by-layer polymer films. J. Power Sources 2016, 303, 73-80.
  48. Snook, G. A.; Peng, C.; Fray, D. J.; Chen, G. Z. Achieving high electrode specific capacitance with materials of low mass specific capacitance: Potentiostatically grown thick micro-nanoporous PEDOT films. Electrochem. Commun. 2007, 9, 83-88.
  49. Bandaru, P. R.; Yamada, H.; Narayanan, R.; Hoefer, M. Charge transfer and storage in nanostructures. Mater. Sci. Eng., R 2015, 96, 1- 69.
  50. Suematsu, S.; Oura, Y.; Tsujimoto, H.; Kanno, H.; Naoi, K. Conducting polymer films of cross-linked structure and their QCM analysis. Electrochim. Acta 2000, 45, 3813-3821.
  51. Huang, J.; Kaner, R. B. A General Chemical Route to Polyaniline Nanofibers. J. Am. Chem. Soc. 2004, 126, 851-855.
  52. Heeger, A. J. The Critical Regime of the Metal-Insulator Transition in Conducting Polymers: Experimental Studies. Phys. Scr. 1999, T102, 30-35.
  53. Cho, S.; Shin, K. H.; Jang, J. Enhanced Electrochemical Performance of Highly Porous Supercapacitor Electrodes Based on Solution Processed Polyaniline Thin Films. ACS Appl. Mater. Interfaces 2013, 5, 9186-9193.
  54. Aasmundtveit, K. E.; Samuelsen, E. J.; Pettersson, L. A. A.; Inganas, O.; Johansson, T.; Feidenhans'l, R. Structure of Thin Films of Poly(3,4-Ethylenedioxythiophene). Synth. Met. 1999, 101, 561-564.
  55. Niu, L.; Kvarnstrom, C.; Froberg, K.; Ivaska, A. Electrochemi- cally controlled surface morphology and crystallinity in poly(3,4- ethylenedioxythiophene) films. Synth. Met. 2001, 122, 425-429.
  56. Breiby, D. W.; Samuelsen, E. J.; Groenendaal, L.; Struth, B. Smectic Structures in Electrochemically Prepared Poly(3,4-Ethyl- enedioxythiophene) Films. J. Polym. Sci., Part B: Polym. Phys. 2003, 41, 945-952.
  57. Massonnet, N.; Carella, A.; de Geyer, A.; Faure-Vincent, J.; Simonato, J.-P. Metallic Behaviour of Acid Doped Highly Conductive Polymers. Chem. Sci. 2015, 6, 412-417.
  58. Kim, N.; Kee, S.; Lee, S. H.; Lee, B. H.; Kahng, Y. H.; Jo, Y.-R.; Kim, B.-J.; Lee, K. Highly Conductive PEDOT: PSS Nanofibrils Induced by Solution-Processed Crystallization. Adv. Mater. 2014, 26, 2268-2272.
  59. Kim, E.-G.; Bredas, J.-L. Electronic Evolution of Poly(3,4- Ethylenedioxythiophene) (PEDOT): From the Isolated Chain to the Pristine and Heavily Doped Crystals. J. Am. Chem. Soc. 2008, 130, 16880-16889.
  60. Tian, W.; Mao, X.; Brown, P.; Rutledge, G. C.; Hatton, T. A. Electrochemically Nanostructured Polyvinylferrocene/Polypyrrole Hybrids with Synergy for Energy Storage. Adv. Funct. Mater. 2015, 25, 4803-4813.
  61. Song, Y.; Liu, T.-Y.; Xu, X.-X.; Feng, D.-Y.; Li, Y.; Liu, X.-X. Pushing the Cycling Stability Limit of Polypyrrole for Supercapacitors. Adv. Funct. Mater. 2015, 25, 4626-4632.
  62. Dai, Z.; Peng, C.; Chae, J. H.; Ng, K. C.; Chen, G. Z. Cell voltage versus electrode potential range in aqueous supercapacitors. Sci. Rep. 2015, 5, 9854.
  63. Zhu, J.; Xu, Y.; Wang, J.; Lin, J.; Sun, X.; Mao, S. The effect of various electrolyte cations on electrochemical performance of polypyrrole/RGO based supercapacitors. Phys. Chem. Chem. Phys. 2015, 17, 28666-28673.
  64. Huang, Y.; Zhu, M.; Pei, Z.; Huang, Y.; Geng, H.; Zhi, C. Extremely Stable Polypyrrole Achieved via Molecular Ordering for Highly Flexible Supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 2435-2440.
  65. Huang, Y.; Tao, J.; Meng, W.; Zhu, M.; Huang, Y.; Fu, Y.; Gao, Y.; Zhi, C. Super-high rate stretchable polypyrrole-based super- capacitors with excellent cycling stability. Nano Energy 2015, 11, 518- 525.
  66. Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31-35.
  67. Boota, M.; Anasori, B.; Voigt, C.; Zhao, M.-Q.; Barsoum, M. W.; Gogotsi, Y. Pseudocapacitive Electrodes Produced by Oxidant-Free Polymerization of Pyrrole between the Layers of 2D Titanium Carbide (MXene). Adv. Mater. 2016, 28, 1517-1522.
  68. Mo, D.; Zhou, W.; Ma, X.; Xu, J.; Zhu, D.; Lu, B. Electrochemical synthesis and capacitance properties of a novel poly(3,4-ethylenedioxythiophene bis-substituted bithiophene) elec- trode material. Electrochim. Acta 2014, 132, 67-74.
  69. Kurra, N.; Hota, M. K.; Alshareef, H. N. Conducting polymer micro-supercapacitors for flexible energy storage and AC line-filtering. Nano Energy 2015, 13, 500-508.
  70. Kurra, N.; Jiang, Q.; Syed, A.; Xia, C.; Alshareef, H. N. Micro- Pseudocapacitors with Electroactive Polymer Electrodes: Toward AC- Line Filtering Applications. ACS Appl. Mater. Interfaces 2016, 8, 12748-12755.
  71. Zhang, M.; Zhou, Q.; Chen, J.; Yu, X.; Huang, L.; Li, Y.; Li, C.; Shi, G. An ultrahigh-rate electrochemical capacitor based on solution- processed highly conductive PEDOT:PSS films for AC line-filtering. Energy Environ. Sci. 2016, 9, 2005-2010.
  72. Wang, Y.; Tao, S.; An, Y.; Wu, S.; Meng, C. Bio-inspired high performance electrochemical supercapacitors based on conducting polymer modified coral-like monolithic carbon. J. Mater. Chem. A 2013, 1, 8876-8887.
  73. Shi, K.; Zhitomirsky, I. Influence of Current Collector on Capacitive Behavior and Cycling Stability of Tiron Doped Polypyrrole Electrodes. J. Power Sources 2013, 240, 42-49.
  74. Kurra, N.; Wang, R.; Alshareef, H. N. All conducting polymer electrodes for asymmetric solid-state supercapacitors. J. Mater. Chem. A 2015, 3, 7368-7374.
  75. Park, H.-W.; Kim, T.; Huh, J.; Kang, M.; Lee, J. E.; Yoon, H. Anisotropic Growth Control of Polyaniline Nanostructures and Their Morphology-Dependent Electrochemical Characteristics. ACS Nano 2012, 6, 7624-7633.
  76. Wang, K.; Zhao, P.; Zhou, X.; Wu, H.; Wei, Z. Flexible supercapacitors based on cloth-supported electrodes of conducting polymer nanowire array/SWCNT composites. J. Mater. Chem. 2011, 21, 16373-16378.
  77. Huang, J.; Wang, K.; Wei, Z. Conducting polymer nanowire arrays with enhanced electrochemical performance. J. Mater. Chem. 2010, 20, 1117-1121.
  78. Largeot, C.; Portet, C.; Chmiola, J.; Taberna, P. L.; Gogotsi, Y.; Simon, P. Relation Between the Ion Size and Pore Size for an Electric Double-Layer Capacitor. J. Am. Chem. Soc. 2008, 130, 2730-2731.
  79. Liu, J. H.; An, J. W.; Ma, Y. X.; Li, M. L.; Ma, R. B.; Yu, M.; Li, S. M. Electrochemical properties comparison of the polypyrrole nanotube and polyaniline nanofiber applied in supercapacitor. Eur. Phys. J.: Appl. Phys. 2012, 57, No. 30702, DOI: 10.1051/epjap/ 2012110368.
  80. Li, G.-R.; Feng, Z.-P.; Zhong, J.-H.; Wang, Z.-L.; Tong, Y.-X. Electrochemical Synthesis of Polyaniline Nanobelts with Predominant Electrochemical Performances. Macromolecules 2010, 43, 2178-2183.
  81. Shi, Y.; Pan, L.; Liu, B.; Wang, Y.; Cui, Y.; Bao, Z.; Yu, G. Nanostructured conductive polypyrrole hydrogels as high-perform- ance, flexible supercapacitor electrodes. J. Mater. Chem. A 2014, 2, 6086-6091.
  82. Xu, D.; Xiao, X.; Cai, J.; Zhou, J.; Zhang, L. Highly rate and cycling stable electrode materials constructed from polyaniline/ cellulose nanoporous microspheres. J. Mater. Chem. A 2015, 3, 16424-16429.
  83. Shinde, S. S.; Gund, G. S.; Dubal, D. P.; Jambure, S. B.; Lokhande, C. D. Morphological modulation of polypyrrole thin films through oxidizing agents and their concurrent effect on supercapacitor performance. Electrochim. Acta 2014, 119, 1-10.
  84. Wu, W.; Pan, D.; Li, Y.; Zhao, G.; Jing, L.; Chen, S. Facile fabrication of polyaniline nanotubes using the self-assembly behavior based on the hydrogen bonding: a mechanistic study and application in high-performance electrochemical supercapacitor electrode. Electro- chim. Acta 2015, 152, 126-134.
  85. Wang, Y.; Shi, Y.; Pan, L.; Ding, Y.; Zhao, Y.; Li, Y.; Shi, Y.; Yu, G. Dopant-Enabled Supramolecular Approach for Controlled Syn- thesis of Nanostructured Conductive Polymer Hydrogels. Nano Lett. 2015, 15, 7736-7741.