Human $\neq$ AGI
2020
Abstract
Terms Artificial General Intelligence (AGI) and Human-Level Artificial Intelligence (HLAI) have been used interchangeably to refer to the Holy Grail of Artificial Intelligence (AI) research, creation of a machine capable of achieving goals in a wide range of environments. However, widespread implicit assumption of equivalence between capabilities of AGI and HLAI appears to be unjustified, as humans are not general intelligences. In this paper, we will prove this distinction.
References (62)
- Anonymous, Artificial general intelligence, Wikipedia, Available at: https://en.wikipedia.org/wiki/Artificial_general_intelligence, Retrieved July 3, 2020.
- J. Babcock, J. Kramar and R. Yampolskiy, The AGI Containment Problem, The Ninth Conference on Artificial General Intelligence (AGI2015), NYC, USA, July 16-19, 2016.
- J. Babcock, J. Kramár and R. V. Yampolskiy, Guidelines for artificial intelligence containment, in A. E. Abbas, ed., Next-Generation Ethics: Engineering a Better Society, 2019, pp. 90-112.
- M. Barnett, Might humans not be the most intelligent animals?, Available at: https://www.lesswrong.com/posts/XjuT9vgBfwXPxsdfN/might-humans-not-be-the-most- intelligent-animals, December 23, 2019.
- J. Barrat, Our final invention: Artificial intelligence and the end of the human era, Macmillan, 2013.
- S. D. Baum, B. Goertzel and T. G. Goertzel, How long until human-level AI? Results from an expert assessment, Technological Forecasting and Social Change, 78 (2011), pp. 185- 195.
- M. Blum and S. Vempala, The complexity of human computation via a concrete model with an application to passwords, Proceedings of the National Academy of Sciences, 117 (2020), pp. 9208-9215.
- N. Bostrom, Superintelligence: Paths, dangers, strategies, Oxford University Press, 2014.
- V. Callaghan, J. Miller, R. Yampolskiy and S. Armstrong, The Technological Singularity: Managing the Journey, Springer, 2017.
- F. Chollet, On the measure of intelligence, arXiv preprint arXiv:1911.01547 (2019).
- P. Clark, O. Etzioni, T. Khot, B. D. Mishra, K. Richardson, A. Sabharwal, C. Schoenick, O. Tafjord, N. Tandon and S. Bhakthavatsalam, From 'F' to 'A' on the NY Regents Science Exams: An Overview of the Aristo Project, arXiv preprint arXiv:1909.01958 (2019).
- J. Devlin, M.-W. Chang, K. Lee and K. Toutanova, Bert: Pre-training of deep bidirectional transformers for language understanding, arXiv preprint arXiv:1810.04805 (2018).
- B. Goertzel, L. Orseau and J. Snaider, Artificial General Intelligence, Scholarpedia, 10 (2015), pp. 31847.
- I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville and Y. Bengio, Generative adversarial nets, Advances in neural information processing systems, 2014, pp. 2672-2680.
- M. Guri, A. Kachlon, O. Hasson, G. Kedma, Y. Mirsky and Y. Elovici, GSMem: Data Exfiltration from Air-Gapped Computers over {GSM} Frequencies, 24th {USENIX} Security Symposium ({USENIX} Security 15), 2015, pp. 849-864.
- M. Guri, M. Monitz, Y. Mirski and Y. Elovici, Bitwhisper: Covert signaling channel between air-gapped computers using thermal manipulations, 2015 IEEE 28th Computer Security Foundations Symposium, IEEE, 2015, pp. 276-289.
- J. S. Hall, Beyond AI: Creating the conscience of the machine, Prometheus books, 2009.
- J. Hernández-Orallo, The measure of all minds: evaluating natural and artificial intelligence, Cambridge University Press, 2017.
- M. Hutter, Universal artificial intelligence: Sequential decisions based on algorithmic probability, Springer Science & Business Media, 2004.
- A. R. Jensen, The g factor: The science of mental ability, Praeger Westport, CT, 1998.
- A. Kwong, W. Xu and K. Fu, Hard drive of hearing: Disks that eavesdrop with a synthesized microphone, 2019 IEEE Symposium on Security and Privacy (SP), IEEE, 2019, pp. 905-919.
- Y. Lecun, Yann LeCun: Deep Learning, Convolutional Neural Networks, and Self- Supervised Learning, AI Podcast, Lex Fridman, Available at: https://www.youtube.com/watch?v=SGSOCuByo24, August 31, 2019.
- S. Legg and M. Hutter, A collection of definitions of intelligence, Frontiers in Artificial Intelligence and applications, 157 (2007), pp. 17.
- S. Legg and M. Hutter, Universal intelligence: A definition of machine intelligence, Minds and Machines, 17 (2007), pp. 391-444.
- H. W. Lin, M. Tegmark and D. Rolnick, Why does deep and cheap learning work so well?, Journal of Statistical Physics, 168 (2017), pp. 1223-1247.
- R. Loosemore and B. Goertzel, Why an intelligence explosion is probable, Singularity hypotheses, Springer, 2012, pp. 83-98.
- J. Lukasiewicz, The ignorance explosion, Leonardo, 7 (1974), pp. 159-163.
- J. Lukasiewicz, The ignorance explosion: Understanding industrial civilization, McGill- Queen's Press-MQUP, 1994.
- J. N. Macgregor and T. Ormerod, Human performance on the traveling salesman problem, Perception & psychophysics, 58 (1996), pp. 527-539.
- V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland and G. Ostrovski, Human-level control through deep reinforcement learning, Nature, 518 (2015), pp. 529-533.
- H. Moravec, When will computer hardware match the human brain, Journal of evolution and technology, 1 (1998), pp. 10.
- L. Muehlhauser and A. Salamon, Intelligence explosion: Evidence and import, Singularity hypotheses, Springer, 2012, pp. 15-42.
- B. Nassi, Y. Pirutin, A. Shamir, Y. Elovici and B. Zadov, Lamphone: Real-Time Passive Sound Recovery from Light Bulb Vibrations, Cryptology ePrint Archive, Available at: https://eprint.iacr.org/2020/708.
- T.-H. Oh, T. Dekel, C. Kim, I. Mosseri, W. T. Freeman, M. Rubinstein and W. Matusik, Speech2face: Learning the face behind a voice, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 7539-7548.
- R. Poplin, A. V. Varadarajan, K. Blumer, Y. Liu, M. V. Mcconnell, G. S. Corrado, L. Peng and D. R. Webster, Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning, Nature Biomedical Engineering, 2 (2018), pp. 158-164.
- R. D. Roberts and L. Stankov, Individual differences in speed of mental processing and human cognitive abilities: Toward a taxonomic model, Learning and Individual Differences, 11 (1999), pp. 1-120.
- D. Sero, A. Zaidi, J. Li, J. D. White, T. B. G. Zarzar, M. L. Marazita, S. M. Weinberg, P. Suetens, D. Vandermeulen and J. K. Wagner, Facial recognition from DNA using face-to- DNA classifiers, Nature communications, 10 (2019), pp. 2557.
- I. Shumailov, L. Simon, J. Yan and R. Anderson, Hearing your touch: A new acoustic side channel on smartphones, arXiv preprint arXiv:1903.11137 (2019).
- D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai and A. Bolton, Mastering the game of go without human knowledge, Nature, 550 (2017), pp. 354.
- M. Trazzi and R. V. Yampolskiy, Artificial Stupidity: Data We Need to Make Machines Our Equals, Patterns, 1 (2020), pp. 100021.
- M. Trazzi and R. V. Yampolskiy, Building safer AGI by introducing artificial stupidity, arXiv preprint arXiv:1808.03644 (2018).
- A. Turing, Computing Machinery and Intelligence, Mind, 59(236) (1950), pp. 433-460.
- L. Valiant, Probably Approximately Correct: Algorithms for Learning and Prospering in a Complex World, Basic Books (AZ), 2013.
- O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi, R. Powell, T. Ewalds and P. Georgiev, Grandmaster level in StarCraft II using multi- agent reinforcement learning, Nature (2019), pp. 1-5.
- P. Wang, On Defining Artificial Intelligence, Journal of Artificial General Intelligence, 10 (2019), pp. 1-37.
- K. Wiggers, Yann LeCun and Yoshua Bengio: Self-supervised learning is the key to human- level intelligence, Available at: https://venturebeat.com/2020/05/02/yann-lecun-and- yoshua-bengio-self-supervised-learning-is-the-key-to-human-level-intelligence/, May 2, 2020.
- D. H. Wolpert, What the no free lunch theorems really mean; how to improve search algorithms, Santa Fe Institute, 2012.
- D. H. Wolpert and W. G. Macready, No free lunch theorems for optimization, IEEE transactions on evolutionary computation, 1 (1997), pp. 67-82.
- D. Yaman, F. I. Eyiokur and H. K. Ekenel, Ear2Face: Deep Biometric Modality Mapping, arXiv preprint arXiv:2006.01943 (2020).
- R. V. Yampolskiy, AI-Complete, AI-Hard, or AI-Easy-Classification of Problems in AI, The 23rd Midwest Artificial Intelligence and Cognitive Science Conference, Cincinnati, OH, USA (2012).
- R. V. Yampolskiy, Artificial Intelligence Safety and Security, Chapman and Hall/CRC, 2018.
- R. V. Yampolskiy, On Defining Differences Between Intelligence and Artificial Intelligence, Journal of Artificial General Intelligence, 11 (2020), pp. 68-70.
- R. V. Yampolskiy, The singularity may be near, Information, 9 (2018), pp. 190.
- R. V. Yampolskiy, The space of possible mind designs, International Conference on Artificial General Intelligence, Springer, 2015, pp. 218-227.
- R. V. Yampolskiy, Turing Test as a Defining Feature of AI-Completeness, Artificial Intelligence, Evolutionary Computation and Metaheuristics -In the footsteps of Alan Turing. Xin-She Yang (Ed.), Springer, 2013, pp. 3-17.
- R. V. Yampolskiy, Unexplainability and incomprehensibility of artificial intelligence, arXiv preprint arXiv:1907.03869 (2019).
- R. V. Yampolskiy, Unpredictability of AI: On the Impossibility of Accurately Predicting All Actions of a Smarter Agent, Journal of Artificial Intelligence and Consciousness, 7 (2020), pp. 109-118.
- R. V. Yampolskiy, What are the ultimate limits to computational techniques: verifier theory and unverifiability, Physica Scripta, 92 (2017), pp. 093001.
- E. Yudkowsky and R. Hanson, The Hanson-Yudkowsky AI-foom debate, MIRI Technical Report, Available at: http://intelligence.org/files/AIFoomDebate.pdf, 2008.
- L. Zhuang, F. Zhou and J. D. Tygar, Keyboard acoustic emanations revisited, ACM Transactions on Information and System Security (TISSEC), 13 (2009), pp. 1-26.
- S. Ziesche and R. V. Yampolskiy, Towards the Mathematics of Intelligence, The Age of Artificial Intelligence: An Exploration (2020), pp. 1.
- Dr. Roman V. Yampolskiy is Tenured Faculty in the department of Computer Science and Engineering at the University of Louisville. He is the founding and current director of the Cyber Security Lab and an author of multiple books including Artificial Superintelligence: a Futuristic Approach. Dr. Yampolskiy's main areas of interest are Artificial Intelligence Safety and Security. Twitter: @romanyam