Academia.eduAcademia.edu

Outline

Probing the dark axion portal with muon anomalous magnetic moment

2021, The European Physical Journal C

https://doi.org/10.1140/EPJC/S10052-021-09571-1

Abstract

We propose a new scenario of using the dark axion portal at one-loop level to explain the recently observed muon anomalous magnetic moment by the Fermilab Muon g-2 experiment. Both axion/axion-like particle (ALP) and dark photon are involved in the same vertex with photon. Although ALP or dark photon alone cannot explain muon $$g-2$$ g - 2 , since the former provides only negative contribution while the latter has very much constrained parameter space, dark axion portal can save the situation and significantly extend the allowed parameter space. The observed muon anomalous magnetic moment provides a robust probe of the dark axion portal scenario.

References (79)

  1. J.P. Miller, E. de Rafael, B.L. Roberts, D. Stöckinger, Muon (g- 2): experiment and theory. Ann. Rev. Nucl. Part. Sci. 62, 237-264 (2012). https://doi.org/10.1146/annurev-nucl-031312-120340
  2. F. Jegerlehner, The anomalous magnetic moment of the muon. Springer Tracts Mod. Phys. 274, 1-693 (2017). https://doi.org/10. 1007/978-3-319-63577-4
  3. P.A. Zyla et al. (Particle Data Group), Review of particle physics. PTEP 2020(8), 083C01 (2020). https://doi.org/10.1093/ ptep/ptaa104
  4. J. Grange et al. (Muon g-2), Muon (g-2) technical design report. arXiv:1501.06858 [physics.ins-det]
  5. A. Keshavarzi (Muon g-2), The muon g -2 experiment at Fer- milab. EPJ Web Conf. 212, 05003 (2019). https://doi.org/10.1051/ epjconf/201921205003. arXiv:1905.00497 [hep-ex]
  6. B. Abi et al. (Muon g-2 Collaboration), Measurement of the pos- itive muon anomalous magnetic moment to 0.46 ppm. Phys. Rev. Lett. 126, 141801 (2021). https://doi.org/10.1103/PhysRevLett. 126.141801. arXiv:2104.03281 [hep-ex]
  7. G.W. Bennett et al. (Muon g-2), Final report of the muon E821 anomalous magnetic moment measurement at BNL. Phys. Rev. D 73, 072003 (2006). https://doi.org/10.1103/PhysRevD.73.072003. arXiv:hep-ex/0602035
  8. A. Keshavarzi, D. Nomura, T. Teubner, g -2 of charged lep- tons, α(M 2 Z ), and the hyperfine splitting of muonium. Phys. Rev. D 101(1), 014029 (2020). https://doi.org/10.1103/PhysRevD.101. 014029. arXiv:1911.00367 [hep-ph]
  9. K. Hagiwara, A.D. Martin, D. Nomura, T. Teubner, Predictions for g-2 of the muon and alpha(QED) (M**2(Z)). Phys. Rev. D 69, 093003 (2004). https://doi.org/10.1103/PhysRevD.69.093003. arXiv:hep-ph/0312250
  10. A. Gérardin, The anomalous magnetic moment of the muon: status of Lattice QCD calculations. Eur. Phys. J. A 57(4), 116 (2021). https://doi.org/10.1140/epja/s10050-0-1-00426-7. arXiv:2012.03931 [hep-lat]
  11. E.H. Chao, R.J. Hudspith, A. Gérardin, J.R. Green, H.B. Meyer, K. Ottnad, Hadronic light-by-light contribution to (g -2) μ from lattice QCD: a complete calculation. Eur. Phys. J. C 81(7), 651 (2021). https://doi.org/10.1140/epjc/s10052-021-09455-4. arXiv:2104.02632 [hep-lat]
  12. S. Borsanyi, Z. Fodor, J.N. Guenther, C. Hoelbling, S.D. Katz, L. Lellouch, T. Lippert, K. Miura, L. Parato, K.K. Szabo et al., Leading hadronic contribution to the muon 2 magnetic moment from lattice QCD. Nature 593, 51-55 (2021). https://doi.org/10. 1038/s41586-021-03418-1. arXiv:2002.12347 [hep-lat]
  13. T. Blum et al. (RBC and UKQCD), Calculation of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment. Phys. Rev. Lett. 121(2), 022003 (2018). https://doi.org/ 10.1103/PhysRevLett.121.022003. arXiv:1801.07224 [hep-lat]
  14. T. Blum, N. Christ, M. Hayakawa, T. Izubuchi, L. Jin, C. Jung, C. Lehner, Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD. Phys. Rev. Lett. 124(13), 132002 (2020). https://doi.org/10.1103/ PhysRevLett.124.132002. arXiv:1911.08123 [hep-lat]
  15. M. Davier, A. Hoecker, B. Malaescu, Z. Zhang, A new evalua- tion of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to α(m 2 Z ). Phys. Rev. D 101(1), 014029 (2020). https://doi.org/10.1140/epjc/s10052-020-7792-2. arXiv:1908.00921 [hep-ph] [Erratum: Eur. Phys. J. C 80(5), 410 (2020)]
  16. T. Xiao, S. Dobbs, A. Tomaradze, K.K. Seth, G. Bonvicini, Pre- cision measurement of the hadronic contribution to the muon anomalous magnetic moment. Phys. Rev. D 97(3), 032012 (2018). https://doi.org/10.1103/PhysRevD.97.032012. arXiv:1712.04530 [hep-ex]
  17. J.P. Lees et al. (BaBar), Study of the reactions e + e -→ π + π -π 0 π 0 π 0 γ and π + π -π 0 π 0 ηγ at center-of-mass energies from threshold to 4.35 GeV using initial-state radiation. Phys. Rev. D 98(11), 112015 (2018). https://doi.org/10.1103/PhysRevD.98. 112015. arXiv:1907.01556 [hep-ex]
  18. M. Hoferichter, B.L. Hoid, B. Kubis, Three-pion contribution to hadronic vacuum polarization. JHEP 08, 137 (2019). https://doi. org/10.1007/JHEP08(2019)137. arXiv:1907.01556 [hep-ph]
  19. M. Benayoun, P. David, L. DelBuono, F. Jegerlehner, Muon g - 2 estimates: can one trust effective Lagrangians and global fits? Eur. Phys. J. C 75(12), 613 (2015). https://doi.org/10.1140/epjc/ s10052-015-3830-x. arXiv:1507.02943 [hep-ph]
  20. F. Jegerlehner, A. Nyffeler, The muon g -2. Phys. Rep. 477, 1-110 (2009). https://doi.org/10.1016/j.physrep.2009.04. 003. arXiv:0902.3360 [hep-ph]
  21. T. Aoyama et al., The anomalous magnetic moment of the muon in the Standard Model. Phys. Rep. 887, 1-166 (2020). https://doi. org/10.1016/j.physrep.2020.07.006. arXiv:2006.04822 [hep-ph]
  22. A. Czarnecki, W.J. Marciano, The muon anomalous mag- netic moment: a harbinger for 'new physics'. Phys. Rev. D 64, 013014 (2001). https://doi.org/10.1103/PhysRevD.64.013014. arXiv:hep-ph/0102122
  23. W. Yin, M. Yamaguchi, Muon g -2 at multi-TeV muon collider. arXiv:2012.03928 [hep-ph]
  24. R. Capdevilla, D. Curtin, Y. Kahn, G. Krnjaic, A no-lose theorem for discovering the new physics of (g -2) μ at muon colliders. arXiv:2101.10334 [hep-ph]
  25. M. Lindner, M. Platscher, F.S. Queiroz, A call for new physics: the muon anomalous magnetic moment and lepton flavor violation. Phys. Rep. 731, 1-82 (2018). https://doi.org/10.1016/j.physrep. 2017.12.001. arXiv:1610.06587 [hep-ph]
  26. S.N. Gninenko, N.V. Krasnikov, The muon anomalous mag- netic moment and a new light gauge boson. Phys. Lett. B 513, 119 (2001). https://doi.org/10.1016/S0370-2693(01)00693-1. arXiv:hep-ph/0102222
  27. S. Baek, N.G. Deshpande, X.G. He, P. Ko, Muon anoma- lous g-2 and gauged L(muon) -L(tau) models. Phys. Rev. D 64, 055006 (2001). https://doi.org/10.1103/PhysRevD.64.055006. arXiv:hep-ph/0104141
  28. E. Ma, D.P. Roy, S. Roy, Gauged L(mu)-L(tau) with large muon anomalous magnetic moment and the bimaximal mixing of neutri- nos. Phys. Lett. B 525, 101-106 (2002). https://doi.org/10.1016/ S0370-2693(01)01428-9. arXiv:hep-ph/0110146
  29. W. Altmannshofer, C.Y. Chen, P.S. Bhupal Dev, A. Soni, Lepton flavor violating Z' explanation of the muon anomalous magnetic moment. Phys. Lett. B 762, 389-398 (2016). https://doi.org/10. 1016/j.physletb.2016.09.046. arXiv:1607.06832 [hep-ph]
  30. A. Crivellin, J. Girrbach, U. Nierste, Yukawa coupling and anoma- lous magnetic moment of the muon: an update for the LHC era. Phys. Rev. D 83, 055009 (2011). https://doi.org/10.1103/ PhysRevD.83.055009. arXiv:1010.4485 [hep-ph]
  31. C.Y. Chen, H. Davoudiasl, W.J. Marciano, C. Zhang, Implica- tions of a light dark Higgs solution to the g μ -2 discrepancy. Phys. Rev. D 93(3), 035006 (2016). https://doi.org/10.1103/PhysRevD. 93.035006. arXiv:1511.04715 [hep-ph]
  32. F. Abu-Ajamieh, Probing scalar and pseudoscalar solutions of the g-2 anomaly. Adv. High Energy Phys. 2020, 1751534 (2020). https://doi.org/10.1155/2020/175153. arXiv:1810.08891 [hep-ph]
  33. S. Jana, P.K. Vishnu, S. Saad, Resolving electron and muon g -2 within the 2HDM. Phys. Rev. D 101(11), 115037 (2020). https:// doi.org/10.1103/PhysRevD.101.115037. arXiv:2003.03386 [hep- ph]
  34. W.J. Marciano, A. Masiero, P. Paradisi, M. Passera, Contribu- tions of axionlike particles to lepton dipole moments. Phys. Rev. D 94(11), 115033 (2016). https://doi.org/10.1103/PhysRevD.94. 115033. arXiv:1607.01022 [hep-ph]
  35. D. Chakraverty, D. Choudhury, A. Datta, A nonsupersym- metric resolution of the anomalous muon magnetic moment. Phys. Lett. B 506, 103-108 (2001). https://doi.org/10.1016/ S0370-2693(01)00419-1. arXiv:hep-ph/0102180
  36. K.M. Cheung, Muon anomalous magnetic moment and leptoquark solutions. Phys. Rev. D 64, 033001 (2001). https://doi.org/10.1103/ PhysRevD.64.033001. arXiv:hep-ph/0102238
  37. J.A. Grifols, A. Mendez, Constraints on supersymmetric particle masses from (g -2) μ. Phys. Rev. D 26, 1809 (1982). https://doi. org/10.1103/PhysRevD.26.1809
  38. R. Barbieri, L. Maiani, The muon anomalous magnetic moment in broken supersymmetric theories. Phys. Lett. B 117, 203-207 (1982). https://doi.org/10.1016/0370-2693(82)90547-0
  39. S.P. Martin, J.D. Wells, Muon anomalous magnetic dipole moment in supersymmetric theories. Phys. Rev. D 64, 035003 (2001). https://doi.org/10.1103/PhysRevD.64.035003. arXiv:hep-ph/0103067
  40. D. Stockinger, The muon magnetic moment and supersymmetry. J. Phys. G 34, R45-R92 (2007). https://doi.org/10.1088/0954-3899/ 34/2/R01. arXiv:hep-ph/0609168
  41. B.P. Padley, K. Sinha, K. Wang, Natural supersymmetry, muon g -2, and the last crevices for the top squark. Phys. Rev. D 92(5), 055025 (2015). https://doi.org/10.1103/PhysRevD.92. 055025. arXiv:1505.05877 [hep-ph]
  42. A.S. Belyaev, J.E. Camargo-Molina, S.F. King, D.J. Miller, A.P. Morais, P.B. Schaefers, A to Z of the muon anomalous mag- netic moment in the MSSM with Pati-Salam at the GUT scale. JHEP 06, 142 (2016). https://doi.org/10.1007/JHEP06(2016)142. arXiv:1605.02072 [hep-ph]
  43. M. Endo, W. Yin, Explaining electron and muon g -2 anomaly in SUSY without lepton-flavor mixings. JHEP 08, 122 (2019). https:// doi.org/10.1007/JHEP08(2019)122. arXiv:1906.08768 [hep-ph]
  44. E. Kpatcha, I. Lara, D.E. López-Fogliani, C. Muñoz, N. Nagata, Explaining muon g -2 data in the μνSSM. Eur. Phys. J. C 81(2), 154 (2021). https://doi.org/10.1140/epjc/s10052-021-08938-8. arXiv:1912.04163 [hep-ph]
  45. P. Fayet, U-boson production in e+ e-annihilations, psi and Upsilon decays, and Light Dark Matter. Phys. Rev. D 75, 115017 (2007). https://doi.org/10.1103/PhysRevD.75.115017. arXiv:hep-ph/0702176
  46. M. Pospelov, Secluded U(1) below the weak scale. Phys. Rev. D 80, 095002 (2009). https://doi.org/10.1103/PhysRevD.80.095002. arXiv:0811.1030 [hep-ph] (2021) 81:787
  47. D. Tucker-Smith, I. Yavin, Muonic hydrogen and MeV forces. Phys. Rev. D 83, 101702 (2011). https://doi.org/10.1103/ PhysRevD.83.101702. arXiv:1011.4922 [hep-ph]
  48. G. Mohlabeng, Revisiting the dark photon explanation of the muon anomalous magnetic moment. Phys. Rev. D 99(11), 115001 (2019). https://doi.org/10.1103/PhysRevD.99.115001. arXiv:1902.05075 [hep-ph]
  49. M. Fabbrichesi, E. Gabrielli, G. Lanfranchi, in The Physics of the Dark Photon. SpringerBriefs in Physics (Springer, Cham, 2020). https://doi.org/10.1007/978-3-030-62519-1. arXiv:2005.01515 [hep-ph]
  50. P. Agrawal, Z. Chacko, C.B. Verhaaren, Leptophilic dark matter and the anomalous magnetic moment of the muon. JHEP 08, 147 (2014). https://doi.org/10.1007/JHEP08(2014)147. arXiv:1402.7369 [hep-ph]
  51. G. Bélanger, C. Delaunay, S. Westhoff, A dark matter relic from muon anomalies. Phys. Rev. D 92, 055021 (2015). https://doi.org/ 10.1103/PhysRevD.92.055021. arXiv:1507.06660 [hep-ph]
  52. K. Kowalska, E.M. Sessolo, Expectations for the muon g-2 in sim- plified models with dark matter. JHEP 09, 112 (2017). https://doi. org/10.1007/JHEP09(2017)112. arXiv:1707.00753 [hep-ph]
  53. L. Calibbi, R. Ziegler, J. Zupan, Minimal models for dark matter and the muon g-2 anomaly. JHEP 07, 046 (2018). https://doi.org/ 10.1007/JHEP07(2018)046. arXiv:1804.00009 [hep-ph]
  54. J. Kawamura, S. Okawa, Y. Omura, Current status and muon g -2 explanation of lepton portal dark matter. JHEP 08, 042 (2020). https://doi.org/10.1007/JHEP08(2020)042. arXiv:2002.12534 [hep-ph]
  55. S. Jana, P.K. Vishnu, W. Rodejohann, S. Saad, Dark matter assisted lepton anomalous magnetic moments and neutrino masses. Phys. Rev. D 102(7), 075003 (2020). https://doi.org/10.1103/PhysRevD. 102.075003. arXiv:2008.02377 [hep-ph]
  56. K. Kaneta, H.S. Lee, S. Yun, Portal connecting dark photons and axions. Phys. Rev. Lett. 118(10), 101802 (2017). https://doi.org/ 10.1103/PhysRevLett.118.101802. arXiv:1611.01466 [hep-ph]
  57. S.M. Barr, E.M. Freire, A. Zee, A mechanism for large neutrino magnetic moments. Phys. Rev. Lett. 65, 2626-2629 (1990). https:// doi.org/10.1103/PhysRevLett.65.2626
  58. K. Kannike, M. Raidal, D.M. Straub, A. Strumia, Anthropic solution to the magnetic muon anomaly: the charged see-saw.
  59. JHEP02, 106 (2012). https://doi.org/10.1007/JHEP02(2012)106. arXiv:1111.2551 [hep-ph] [Erratum: JHEP 10, 136 (2012)]
  60. R. Dermisek, A. Raval, Explanation of the muon g-2 anomaly with vectorlike leptons and its implications for Higgs decays. Phys. Rev. D 88, 013017 (2013). https://doi.org/10.1103/PhysRevD.88. 013017. arXiv:1305.3522 [hep-ph]
  61. A. Crivellin, M. Hoferichter, P. Schmidt-Wellenburg, Combined explanations of (g -2) μ,e and implications for a large muon EDM. Phys. Rev. D 98(11), 113002 (2018). https://doi.org/10. 1103/PhysRevD.98.113002. arXiv:1807.11484 [hep-ph]
  62. P. de Niverville, H.S. Lee, M.S. Seo, Implications of the dark axion portal for the muon g-2, B factories, fixed target neutrino exper- iments, and beam dumps. Phys. Rev. D 98(11), 115011 (2018). https://doi.org/10.1103/PhysRevD.98.115011. arXiv:1806.00757 [hep-ph]
  63. G. Alonso-Álvarez, M.B. Gavela, P. Quilez, Axion cou- plings to electroweak gauge bosons. Eur. Phys. J. C 79(3), 223 (2019). https://doi.org/10.1140/epjc/s10052-019-6732-5. arXiv:1811.05466 [hep-ph]
  64. M. Bauer, M. Heiles, M. Neubert, A. Thamm, Axion-like particles at future colliders. Eur. Phys. J. C 79(1), 74 (2019). https://doi.org/ 10.1140/epjc/s10052-019-6587-9. arXiv:1808.10323 [hep-ph]
  65. K. Cheung, T.W. Kephart, W.Y. Keung, T.C. Yuan, Decay of Z boson into photon and unparticle. Phys. Lett. B 662, 436-440 (2008). https://doi.org/10.1016/j.physletb.2008.03.037. arXiv:0801.1762 [hep-ph]
  66. J. Jaeckel, M. Spannowsky, Probing MeV to 90 GeV axion- like particles with LEP and LHC. Phys. Lett. B 753, 482-487 (2016). https://doi.org/10.1016/j.physletb.2015.12.037. arXiv:1509.00476 [hep-ph]
  67. B. Batell, N. Lange, D. McKeen, M. Pospelov, A. Ritz, Muon anomalous magnetic moment through the leptonic Higgs por- tal. Phys. Rev. D 95(7), 075003 (2017). https://doi.org/10.1103/ PhysRevD.95.075003. arXiv:1606.04943 [hep-ph]
  68. C.Y. Chen, M. Pospelov, Y.M. Zhong, Muon beam experiments to probe the dark sector. Phys. Rev. D 95(11), 115005 (2017). https://doi.org/10.1103/PhysRevD.95.115005. arXiv:1701.07437 [hep-ph]
  69. B. Batell, A. Freitas, A. Ismail, D. Mckeen, Flavor-specific scalar mediators. Phys. Rev. D 98(5), 055026 (2018). https://doi.org/10. 1103/PhysRevD.98.055026. arXiv:1712.10022 [hep-ph]
  70. D. Croon, G. Elor, R.K. Leane, S.D. McDermott, Supernova muons: new constraints on Z ' bosons, axions and ALPs. JHEP 01, 107 (2021). https://doi.org/10.1007/JHEP01(2021)107. arXiv:2006.13942 [hep-ph]
  71. J.P. Lees et al. (BaBar), Search for a muonic dark force at BABAR. Phys. Rev. D 94(1), 011102 (2016). https://doi.org/10. 1103/PhysRevD.94.011102. arXiv:1606.03501 [hep-ex]
  72. A.M. Sirunyan et al. (CMS), Search for an L μ -L τ gauge boson using Z→ 4μ events in proton-proton collisions at √ s = 13 TeV. Phys. Lett. B 792, 345-368 (2019). https://doi.org/10. 1016/j.physletb.2019.01.072. arXiv:1808.03684 [hep-ex]
  73. A. Filippi, M. De Napoli, Searching in the dark: the hunt for the dark photon. Rev. Phys. 5, 100042 (2020). https://doi.org/10.1016/ j.revip.2020.100042. arXiv:2006.04640 [hep-ph]
  74. J.P. Lees et al. (BaBar), Search for a dark photon in e + e -collisions at BaBar. Phys. Rev. Lett. 113(20), 201801 (2014). https://doi.org/ 10.1103/PhysRevLett.113.201801. arXiv:1406.2980 [hep-xp]
  75. J.R. Batley et al. (NA48/2), Search for the dark photon in π 0 decays. Phys. Lett. B 746, 178-185 (2015). https://doi.org/10. 1016/j.physletb.2015.04.068. arXiv:1504.00607 [hep-ex]
  76. P. Ilten, Y. Soreq, J. Thaler, M. Williams, W. Xue, Proposed inclusive dark photon search at LHCb. Phys. Rev. Lett. 116(25), 251803 (2016). https://doi.org/10.1103/PhysRevLett.116.251803. arXiv:1603.08926 [hep-ph]
  77. R. Aaij et al. (LHCb), Search for A → μ + μ -decays. Phys. Rev. Lett. 124(4), 041801 (2020). https://doi.org/10.1103/PhysRevLett. 124.041801. arXiv:1910.06926 [hep-ex]
  78. A.M. Sirunyan et al. (CMS), Search for a narrow resonance lighter than 200 GeV decaying to a pair of muons in proton- proton collisions at √ s = TeV. Phys. Rev. Lett. 124(13), 131802 (2020). https://doi.org/10.1103/PhysRevLett.124.131802. arXiv:1912.04776 [hep-ex]
  79. D. Curtin, R. Essig, S. Gori, J. Shelton, Illuminating dark photons with high-energy colliders. JHEP 02, 157 (2015). https://doi.org/ 10.1007/JHEP02(2015)157. arXiv:1412.0018 [hep-ph]