Academia.eduAcademia.edu

Outline

Cubic semisymmetric graphs of order

2010, Discrete Mathematics

https://doi.org/10.1016/J.DISC.2010.05.018

Abstract

A regular edge-transitive graph is said to be semisymmetric if it is not vertex-transitive. By Folkman [J. Folkman, Regular line-symmetric graphs, J. Combin Theory 3 (1967) 215-232], there is no semisymmetric graph of order 2p or 2p 2 for a prime p and by Malnič, et al. [A. Malnič, D. Marušič, C.Q. Wang, Cubic edge-transitive graphs of order 2p 3 , Discrete Math. 274 (2004) 187-198], there exists a unique cubic semisymmetric graph of order 2p 3 , the so-called Gray graph of order 54. In this paper it is shown that a connected cubic semisymmetric graph of order 6p 3 exists if and only if p − 1 is divisible by 3. There are exactly two such graphs for a given order, which are constructed explicitly.

References (34)

  1. N. Biggs, Three remarkable graphs, Canad. J. Math. 25 (1973) 397-411.
  2. I.Z. Bouwer, An edge but not vertex transitive cubic graph, Bull. Canad. Math. Soc. 11 (1968) 533-535.
  3. I.Z. Bouwer, On edge but not vertex transitive regular graphs, J. Combin. Theory B 12 (1972) 32-40.
  4. M. Conder, P. Dobcsanyi, Trivalent symmetric graphs on up to 768 vertices, J. Combin. Math. Combin. Comput. 40 (2002) 41-63.
  5. M. Conder, A. Malnič, D. Marušič, P. Potočnik, A census of semisymmetric cubic graphs on up to 768 vertices, J. Algebraic Combin. 23 (2006) 255-294.
  6. J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, Atlas of Finite Group, Clarendon Press, Oxford, 1985.
  7. S.F. Du, M.Y. Xu, A classification of semisymmetric graphs of order 2pq, Comm. in Algebra 28 (2000) 2685-2715.
  8. Y.-Q. Feng, J.H. Kwak, M.Y. Xu, Cubic s-regular graphs of order 2p 3 , J. Graph Theory 52 (2006) 341-352.
  9. Y.Q. Feng, J.H. Kwak, Cubic symmetric graphs of order a small number times a prime or a prime square, J. Combin. Theory B 94 (2007) 627-646.
  10. Y.-Q. Feng, J.X. Zhou, A note on semisymmetric graphs, Discrete Math. 308 (2008) 4031-4035.
  11. J. Folkman, Regular line-symmetric graphs, J. Combin Theory 3 (1967) 215-232.
  12. D. Gorenstein, Finite Simple Groups, Plenum Press, New York, 1982.
  13. J.L. Gross, T.W. Tucker, Generating all graph covering by permutation voltages assignment, Discrete Math. 18 (1977) 273-283.
  14. M.E. Iofinova, A.A. Ivanov, Biprimitive cubic graphs, in: Investigation in Algebraic Theory of Combinatorial Objects, Institute for System Studies, Moscow, 1985, pp. 124-134 (in Russian).
  15. A.V. Ivanov, On edge but not vertex transitive regular graphs, Ann. Discrete Math. 34 (1987) 273-286.
  16. M.L. Klin, On edge but not vertex transitive regular graphs, Colloq-Math. Soc. Janos Bolyai, 25, Algebraic Methods in Graph Theory, Szeged (Hungary), Budapest, 1981, pp. 399-403.
  17. F. Lazebnik, R. Viglione, An infinite series of regular edge-but not vertex-transitive graphs, J. Graph Theory 41 (2002) 249-258.
  18. Z. Lu, C.Q. Wang, M.Y. Xu, On semisymmetric cubic graphs of order 6p 2 , Sc. in China A 47 (2004) 11-17.
  19. A. Malnič, Group actions, covering and lifts of automorphisms, Discrete Math. 182 (1998) 203-218.
  20. A. Malnič, D. Marušič, S. Miklavič, P. Potočnik, Semisymmetric elementary abelian covers of the Möbius-Kantor graph, Discrete Math. 307 (2007) 2156-2175.
  21. A. Malnič, D. Marušič, P. Potočnik, Elementary abelian covers of graphs, J. Algebr. Combin. 20 (2004) 71-97.
  22. A. Malnič, D. Marušič, P. Potočnik, On cubic graphs admitting an edge-transitive solvable group, J. Algebr. Combin. 20 (2004) 99-113.
  23. A. Malnič, D. Marušič, P. Potočnik, C.Q. Wang, An infinite family of cubic edge-but not vertex-transitive graphs, Discrete Math. 280 (2004) 133-148.
  24. A. Malnič, D. Marušič, C.Q. Wang, Cubic edge-transitive graphs of order 2p 3 , Discrete Math. 274 (2004) 187-198.
  25. D. Marušič, Constructing cubic edge-but not vertex-transitive graphs, J. Graph Theory 35 (2000) 152-160.
  26. D. Marušič, P. Potočnik, Semisymmetry of generalized Folkman graphs, Eur. J. Combin. 22 (2001) 333-349.
  27. C.W. Parker, Semisymmetric cubic graphs of twice odd order, Eur. J. Combin. 28 (2007) 572-591.
  28. D.J. Robinson, A Course in the Theory of Groups, Springer-Verlag, New York, 1982.
  29. M. Škoviera, A construction to the theory of voltage groups, Discrete Math. 61 (1986) 281-292.
  30. V.K. Titov, On symmetry in graphs, Voprocy Kibernetiki 9150, in: Proc. of II all Union Seminar on Combinatorial Mathematics, part 2, Nauka, Moscow, 1975, pp. 76-109 (in Russian).
  31. W.T. Tutte, A family of cubical graphs, Proc. Cambr. Philos. Soc. 43 (1947) 459-474.
  32. W.T. Tutte, On the symmetry of cubic graphs, Canad. J. Math. 11 (1959) 621-624.
  33. S. Wilson, A worthy family of semisymmetric graphs, Discrete Math. 271 (2003) 283-294.
  34. M.Y. Xu, Half-transitive graphs of prime-cube order, J. Algebraic Combin. 1 (1992) 275-282.