On microbial states of growth†
1995, Molecular Microbiology
Abstract
It is crucial to the reproducibility of results and their proper interpretation that the conditions under which experiments are carried out be defined with rigour and consistency. In this review we attempt to clarify the differences and interrelationships among steady, balanced and exponential states of culture growth. Basic thermodynamic concepts are used to introduce the idea of steady-state growth in open, biological systems. The classical, sometimes conflicting, definitions of steady-state and balanced growth are presented, and a consistent terminology is proposed. The conditions under which a culture in balanced growth is also in exponential growth and in steady-state growth are indicated. It is pointed out that steady-state growth always implies both balanced and exponential growth, and examples in which the converse does not hold are described. More complex situations are then characterized and the terminology extended accordingly. This leads to the notion of normal growth and growth that can be synchronous or otherwise unbalanced but still reproducible, and to the condition of approximate steady state manifested by growth in batch culture and by asymmetrically dividing cells, which is analysed in some detail.
References (47)
- Barner, H.D., and Cohen, S.S. (1956) J Bacteriol 72: 115- 123.
- Campbell, A. (1957) Bacteriol Rev 21: 263-272.
- Cohen, S.S., and Barner, H.D. (1954) Proc Natl Acad Sci USA 40: 885-893.
- Conover, W.J. (1980) In Practical Nonparametric Statistics, 2nd edn. New York: Wiley, p. 344.
- Cooper, S. (1991) In Bacterial Growth and Division: Biochemistry and Regulation of the Division Cycle of Prokaryotes and Eukaryotes. San Diego: Academic Press, pp. 7, 8, 27, 150, 375.
- Cooper, S. (1993) J Gen Microbio1139:1117-1124.
- Dean, A.C.R., and Hinshelwood, C. (1966) Growth, Function and Regulation in Bacterial Cells. Oxford: Clarendon Press, p. 106.
- Denbigh, K.G. (1951) The Thermodynamics of the Steady State. London: Methuen, p. 1.
- Donachie, W.D., and Begg, K.J. (1970) Nature 227: 1220- 1224.
- Friesen, J.D. (1985) In The Molecular Biology of Bacterial Growth. Schaechter, M., Neidhardt, F.C., Ingraham J.L., and Kjeldgaard, N.O. (eds). Boston: Jones and Bartlett, pp. 373-376.
- Goss, W.A., Deitz, W.H., and Cook, T.M. (1965) J Bacteriol 89: 1068-1074.
- Grover, N.B., and Woldringh, C.L. (1995) J Theor Biol, in press.
- Hadas, H., Einav, M., Fishov, I., and Zaritsky, A. (1995) Microbiology, in press.
- Hartwell, L.H., and Unger, M.W. (1977) J Cell Biol75: 422- 435.
- Henrici, A.T. (1928) Morphologic Variation and Rate of Growth of Bacteria. Microbiology Monographs. London: Bailli~re, Tindatl and Cox.
- Hirota, Y., Ryter, A., and Jacob, F. (1968) Cold Spring Harbor Symp Quant Bio133: 677-693.
- Ingraham, J.L., Maal~e, O., and Neidhardt, F.C. (1983) Growth of the Bacterial Cell. Sunderland: Sinauer Associ- ates, pp. 5, 248.
- Jazwinski, S.M. (1993) ASM News 59: 172-178.
- Katchalsky, A., and Curran, P.F. (1965) Nonequilibrium Thermodynamics in Biophysics. Cambridge: Harvard University Press, p. 66.
- Kell, D.B., Ryder, H.M., Kaprelyants, A.S., and Westerhoff, H.V. (1991) Antonie van Leeuwenhoek 60: 145-158.
- Kjeldgaard, N.O, Maalee, O, and Schaechter, M. (1958) J Gen Microbiol 19: 607-616.
- Kubitschek, H.E. (1971) Introduction to Research with Continuous Cultures. Englewood Cliffs: Prentice-Hall, p. 1. Lark, K.G. (1972) J Mol Biol64: 47-60.
- Lazzarini, R.A., and Winslow, R.M. (1970) Cold Spring Harbor Symp Quant Bio135: 383-390.
- Lord, P.G., and Wheals, A.E. (1980) J Bacteriol 142: 808- 818.
- Luria, S.E., and Delbr0ck, M. (1943) Genetics 28:491-511.
- Maaloe, O. (1962) In The Bacteria. Gunsalus, I.C., and Stanier, R.Y. (eds). VoL 4: The Physiology of Growth. New York: Academic Press, pp. 1-32.
- Maal~e, O., and Kjeldgaard, N.O. (1966) Control of Macro- molecular Synthesis: A Study of DNA, RNA, and Protein Synthesis in Bacteria. New York: Benjamin, p. 57.
- Marr, A.G., Painter, P.R., and Nilson, E.H. (1969) Symp Soc Gen Microbiot 19: 237-261.
- Monod, J. (1950) Ann Inst Pasteur79: 390-410.
- Neidhardt, F.C., Ingraham, J.L, and Schaechter, M. (1990) Physiology of the Bacterial Cell: A Molecular Approach. Sunderland: Sinauer Associates, pp. 3, 6, 199, 216, 394.
- Northrop, J.H. (1954) J Gen Physiol 38:105-115.
- Novick, A. (1955)Annu Rev Microbiol9:97-110.
- Novick, A., and Szilard, L. (1950a) Science 112: 715-716.
- Novick, A., and Szilard, L. (1950b) Proc NatlAcad Sci USA 36:708-719.
- Painter, P.R., and Marr, A.G. (1968) Annu Rev Microbio122: 519-548.
- Powell, E.O. (1956) J Gen Microbio115: 492-511.
- Pritchard, R.H. (1974) Proc Roy Soc B267: 303-336.
- Pritchard, R.H., and Zaritsky, A. (1970) Nature 226: 126- 131.
- Schaechter, M. (1985) In The Molecular Biology of Bacterial Growth. Schaechter, M., Neidhardt, F.C., Ingraham, J.L., and Kjeldgaard N.O. (eds). Boston: Jones and Bartlett, pp. 370-372.
- Schaechter, M., Maalee, O., and Kjeldgaard, N.O. (1958) J Gen Microbio119: 592-606.
- Steen, H.B. (1990) In Flow Cytometry and Sorting. New York: Wiley-Liss, pp. 605-622.
- Takebe, Y., Miura, A., Bedwetl, D.M., Tam, M., and Nomura, M. (1985) J MOl Bio1184: 23-30.
- Woldringh, C.L., Grover, N.B., Rosenberger, R.F., and Zaritsky, A. (1980) J Theor Bio186: 441-454.
- Woldringh, C.L., Huls, P.G., and Vischer, N.O.E. (1993) J Bacterio1175: 3174-3181.
- Zaritsky, A. (1975) J Bacterio1122: 841-846.
- Zaritsky, A., and Pritchard, R.H. (1971) J Mol Bio160: 65-74.
- Zaritsky, A., and Pritchard, R.H. (1973) JBacterio1114: 824- 837.