Academia.eduAcademia.edu

Outline

Using Blur to Affect Perceived Distance and Size

https://doi.org/10.1145/1731047.1731057

Abstract

We present a probabilistic model of how viewers may use defocus blur in conjunction with other pictorial cues to estimate the absolute distances to objects in a scene. Our model explains how the pattern of blur in an image together with relative depth cues indicates the apparent scale of the image's contents. From the model, we develop a semi-automated algorithm that applies blur to a sharply rendered image and thereby changes the apparent distance and scale of the scene's contents. To examine the correspondence between the model/algorithm and actual viewer experience, we conducted an experiment with human viewers and compared their estimates of absolute distance to the model's predictions. We did this for images with geometrically correct blur due to defocus and for images with commonly used approximations to the correct blur. The agreement between the experimental data and model predictions was excellent. The model predicts that some approximations should work well and that others should not. Human viewers responded to the various types of blur in much the way the model predicts. The model and algorithm allow one to manipulate blur precisely and to achieve the desired perceived scale efficiently.

References (60)

  1. AKELEY, K., WATT, S. J., GIRSHICK, A. R., AND BANKS, M. S. 2004. A stereo display prototype with multiple focal distances. ACM Trans. Graph. 23, 3, 804-813.
  2. BARSKY, B. A. 2004. Vision-realistic rendering: simulation of the scanned foveal image from wavefront data of human subjects. In APGV '04: Pro- ceedings of the 1st Symposium on Applied perception in graphics and visualization. 73-81.
  3. BARSKY, B. A., HORN, D. R., KLEIN, S. A., PANG, J. A., AND YU, M. 2003a. Camera models and optical systems used in computer graph- ics: Part I, Object-based techniques. In In Proceedings of the 2003 International Conference on Computational Science and its Applica- tions (ICCSA'03), Montreal, Second International Workshop on Com- puter Graphics and Geometric Modeling (CGGM'2003). 246-255.
  4. BARSKY, B. A., HORN, D. R., KLEIN, S. A., PANG, J. A., AND YU, M. 2003b. Camera models and optical systems used in computer graph- ics: Part II, image-based techniques. In In Proceedings of the 2003 International Conference on Computational Science and its Applica- tions (ICCSA'03), Montreal, Second International Workshop on Com- puter Graphics and Geometric Modeling (CGGM'2003). 256-265.
  5. BELL, J. A. 1924. Theory of mechanical miniatures in cinematography. Transactions of the SMPTE 18, 119.
  6. BRILLAULT-O'MAHONY, B. 1991. New method for vanishing-point de- tection. CVGIP: Image Underst. 54, 2, 289-300.
  7. BURGE, J. D., FOWLKES, C. C., , AND BANKS, M. 2010. Natural-scene statistics predict how the figure-ground cue of convexity affects human depth perception. Journal of Neuroscience. In press.
  8. CANNY, J. 1986. A computational approach to edge detection. Pattern Analysis and Machine Intelligence, IEEE Transactions on PAMI-8, 6 (Nov.), 679-698.
  9. CHINNOCK, C. 2009. Personal Communication.
  10. COLE, F., DECARLO, D., FINKELSTEIN, A., KIN, K., MORLEY, K., AND SANTELLA, A. 2006. Directing gaze in 3d models with stylized focus. Eurographics Symposium on Rendering, 377-387.
  11. COOK, R. L., CARPENTER, L., AND CATMULL, E. 1987. The REYES image rendering architecture. SIGGRAPH Comput. Graph. 21, 4, 95- 102.
  12. COOK, R. L., PORTER, T., AND CARPENTER, L. 1984. Distributed ray tracing. SIGGRAPH Comput. Graph. 18, 3, 137-145.
  13. COUGHLAN, J. M. AND YUILLE, A. L. 2003. Manhattan world: Ori- entation and outlier detection by bayesian inference. Neural Computa- tion 15, 5, 1063-1088.
  14. DIPAOLA, S., RIEBE, C., AND ENNS, J. 2009. Rembrandt's textural agency: A shared perspective in visual art and science. Leonardo In Press.
  15. EGUSA, H. 1983. Effects of brightness, hue, and saturation on perceived depth between adjacent regions in the visual field. Perception 12, 167- 175. FEARING, P. 1995. Importance ordering for real-time depth of field. In Proceedings of the Third International Computer Science Conference on Image Analysis Applications and Computer Graphics. 372-380.
  16. FIELDING, R. 1985. Special effects cinematography, Fourth ed. Focal Press, Oxford.
  17. FISHER, S. K. AND CIUFFREDA, K. J. 1988. Accommodation and appar- ent distance. Perception 17, 609-621.
  18. FLICKR. 2009. Flickr group: Tilt shift miniaturization fakes.
  19. FRY, G. A., BRIDGEMAN, C. S., AND ELLERBROCK, V. J. 1949. The ef- fects of atmospheric scattering on binocular depth perception. American Jounral of Optometry and Archives of American Academy of Optome- try 26, 9-15.
  20. GREEN, P., SUN, W., MATUSIK, W., AND DURAND, F. 2007. Multi- aperture photography. ACM Trans. Graph. 26, 3, 68.
  21. HAEBERLI, P. AND AKELEY, K. 1990. The accumulation buffer: hardware support for high-quality rendering. SIGGRAPH Comput. Graph. 24, 4, 309-318.
  22. HECHT, H., KAISER, M. K., AND BANKS, M. S. 1996. Gravitational acceleration as a cue for absolute size and distance? Perception & Psy- chophysics 58, 1066-1075.
  23. HILLAIRE, S., L ÉCUYER, A., COZOT, R., AND CASIEZ, G. 2007. Depth- of-field blur effects for first-person navigation in virtual environments. In VRST '07: Proceedings of the 2007 ACM symposium on Virtual reality software and technology. 203-206.
  24. HILLAIRE, S., LECUYER, A., COZOT, R., AND CASIEZ, G. 2008. Us- ing an eye-tracking system to improve camera motions and depth-of-field blur effects in virtual environments. Virtual Reality Conference, 2008. VR '08. IEEE, 47-50.
  25. ICHIHARA, S., KITAGAWA, N., AND AKUTSU, H. 2007. Contrast and depth perception: effects of texture contrast and area contrast. Percep- tion 36, 686-695.
  26. KINGSLAKE, R. 1992. Optics in photography. SPIE Optical Engineering Press, Bellingham, Wash.
  27. KOLB, C., MITCHELL, D., AND HANRAHAN, P. 1995. A realistic camera model for computer graphics. In Proceedings of ACM SIGGRAPH. 317- 324.
  28. KOSARA, R., MIKSCH, S., HAUSER, F., SCHRAMMEL, J., GILLER, V., AND TSCHELIGI, M. 2002. Useful properties of semantic depth of field for better f+c visualization. Joint Eurographics -IEEE TCVG Symposium on Visualization, 205-210.
  29. KOSARA, R., MIKSCH, S., AND HAUSER, H. 2001. Semantic depth of field. Proceedings of the IEEE Symposium on Information Visualization, 97-104.
  30. LAFORET, V. 2007. A really big show (May 31, 2007). New York Times.
  31. LARSEN, J. S. 1971. Sagittal growth of the eye. Acta Opthalmologica 49, 6, 873-886.
  32. LEVIN, A., FERGUS, R., DURAND, F., AND FREEMAN, W. T. 2007. Im- age and depth from a conventional camera with a coded aperture. ACM Trans. Graph. 26, 3, 70-1 -70-8.
  33. MARSHALL, J., BURBECK, C., ARIELY, D., ROLLAND, J., AND MARTIN, K. 1996. Occlusion edge blur: A cue to relative visual depth. Journal of the Optical Society of America A 13, 681-688. 19:16 • R. Held et al.
  34. MASAOKA, K., HANAZATO, A., EMOTO, M., YAMANOUE, H., NOJIRI, Y., AND OKANO, F. 2006. Spatial distortion prediction system for stereo- scopic images. Journal of Electronic Imaging 15, 1, 013002-1 -013002- 12.
  35. MATHER, G. 1996. Image blur as a pictorial depth cue. Proceedings of the Royal Society: Biological Sciences 263, 1367, 169-172.
  36. MATHER, G. AND SMITH, D. R. R. 2000. Depth cue integration: Stereop- sis and image blur. Vision Research 40, 25, 3501-3506.
  37. MATHER, G. AND SMITH, D. R. R. 2002. Blur discrimination and it's relationship to blur-mediated depth perception. Perception 31, 10, 1211- 1219.
  38. MCCLOSKEY, M. AND LANGER, M. 2009. Planar orientation from blur gradients in a single image. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2318-2325.
  39. MEESTERS, L., IJSSELSTEIJN, W., AND SEUNTIENS, P. 2004. A survey of perceptual evaluations and requirements of three-dimensional tv. Circuits and Systems for Video Technology, IEEE Transactions on 14, 3 (March), 381-391.
  40. MON-WILLIAMS, M. AND TRESILIAN, J. R. 2000. Ordinal depth infor- mation from accommodation. Ergonomics 43, 3, 391-404.
  41. MORENO-NOGUER, F., BELHUMEUR, P. N., AND NAYAR, S. K. 2007. Active refocusing of images and videos. ACM Trans. Graph. 26, 3, 67-1 -67-9.
  42. MULDER, J. D. AND VAN LIERE, R. 2000. Fast perception-based depth of field rendering. In Proceedings of the ACM symposium on Virtual reality software and technology. 129-133.
  43. OKATANI, T. AND DEGUCHI, K. 2007. Estimating scale of a scene from a single image based on defocus blur and scene geometry. In Computer Vision and Pattern Recognition, 2007. CVPR '07. IEEE Conference on. 1-8.
  44. PALMER, S. E. AND BROOKS, J. L. 2008. Edge-region grouping in figure- ground organization and depth perception. Journal of Experimental Psy- chology: Human Perception and Performance. 24, 6 (12), 1353-1371.
  45. PENTLAND, A. P. 1987. A new sense for depth of field. IEEE Transactions on Pattern Analysis and Machine 9, 4, 523-531.
  46. POTMESIL, M. AND CHAKRAVARTY, I. 1981. A lens and aperture camera model for synthetic image generation. SIGGRAPH Comput. Graph. 15, 3, 297-305.
  47. ROHALY, A. AND WILSON, H. 1999. The effects of contrast on perceived depth and depth discriminations. Vision Research 39, 9-18.
  48. ROKITA, P. 1996. Generating depth of-field effects in virtual reality appli- cations. Computer Graphics and Applications, IEEE 16, 2 (Mar), 18-21.
  49. SAXBERG, B. V. H. 1987. Projected free fall trajectories: 1. theory and simulation. Biological Cybernetics 56, 159-175.
  50. SCHECHNER, Y. Y. AND KIRYATI, N. 2000. Depth from defocus vs. stereo: How different really are they? International Journal of Computer Vi- sion 29, 2, 141-162.
  51. SCHIFFMAN, B. 2008. Movie industry doubles down on 3D. Wired Maga- zine.
  52. SEDGWICK, H. A. 1986. Space Perception. Wiley.
  53. SPRING, K. AND STILES, W. S. 1948. Variation of pupil size with change in the angle at which the light stimulus strikes the retina. Br. J. Ophthal- mol. 32, 6, 340-346.
  54. VISHWANATH, D. 2008. The focal blur gradient affects perceived absolute distance [ECVP abstract supplement]. Perception 27, 130.
  55. WALLACH, H. AND NORRIS, C. M. 1963. Accommodation as a distance cue. American Journal of Psychology 76, 659-664.
  56. WATSON, J., BANKS, M., HOFSTEN, C., AND ROYDEN, C. S. 1992. Grav- ity as a monocular cue for perception of absolute distance and/or absolute size. Perception 21, 1, 69-76.
  57. WATT, S. J., AKELEY, K., ERNST, M. O., AND BANKS, M. S. 2005. Focus cues affect perceived depth. J. Vis. 5, 10 (12), 834-862.
  58. WILSON, B. J., DECKER, K. E., AND ROORDA, A. 2002. Monochromatic aberrations provide an odd-error cue to focus direction. Journal of the Optical Society of America A 19, 833-839.
  59. YAMANOUE, H. 1997. The relation between size distortion and shooting conditions for stereoscopic images. Journal of the SMPTE 106, 4, 225- 232.
  60. YAMANOUE, H., OKUI, M., AND YUYAMA, I. 2000. A study on the re- lationship between shooting conditions and cardboard effect of stereo- scopic images. Circuits and Systems for Video Technology, IEEE Trans- actions on 10, 3 (Apr), 411-416.