Abstract
AI
AI
Lipid trafficking in eukaryotic cells predominantly involves both vesicular and non-vesicular pathways, with organelles increasingly relying on non-vesicular methods, particularly through membrane contact sites. The transfer of lipids is facilitated by lipid transfer proteins (LTPs), which can be categorized into shuttle and bridge types, each employing unique mechanisms for lipid transport. Despite advances in experimental techniques to measure lipid transfer rates, discrepancies remain between in vitro and estimated in vivo lipid fluxes. Recent developments in artificial intelligence and computational tools may provide insights into the physicochemical forces governing these processes and highlight the need for further experimental approaches to clarify lipid transfer dynamics.
References (25)
- Antonny, B., Bigay, J., & Mesmin, B. (2018). The oxysterol- binding protein cycle: Burning off PI(4)P to transport choles- terol. Annual Review of Biochemistry, 87, 809-837. https://doi. org/10.1146/annurev-biochem-061516-044924
- Baaden, M. (2019). Visualizing biological membrane organization and dynamics. Journal of Molecular Biology, 431, 1889-1919. https://doi.org/10.1016/j.jmb.2019.02.018
- Bian, X., Zhang, Z., Xiong, Q., De Camilli, P., & Lin, C. (2019). A programmable DNA-origami platform for studying lipid transfer between bilayers. Nature Chemical Biology, 15, 830-837. https://doi.org/10.1038/s41589-019-0325-3
- Colom, A., Derivery, E., Soleimanpour, S., Tomba, C., Molin, M. D., Sakai, N., Gonzalez-Gaitan, M., Matile, S., & Roux, A. (2018). A fluorescent membrane tension probe. Nature Chemistry, 10, 1118-1125. https://doi.org/10.1038/s41557-018-0127-3
- Dommersnes, P. G., Orwar, O., Brochard-Wyart, F., & Joanny, J. F. (2005). Marangoni transport in lipid nanotubes. Europhysics Letters (EPL), 70, 271-277. https://doi.org/10.1209/epl/ i2004-10477-9
- Egea, P. F. (2021). Mechanisms of non-vesicular exchange of lipids at membrane contact sites: Of shuttles, tunnels and, funnels. Frontiers in Cell and Developmental Biology, 9, 784367. https://doi.org/10.3389/fcell.2021.784367
- Enkavi, G., Javanainen, M., Kulig, W., Rog, T., & Vattulainen, I. (2019). Multiscale simulations of biological membranes: The challenge to understand biological phenomena in a living substance. Chemical Reviews, 119, 5607-5774. https://doi.org/ 10.1021/acs.chemrev.8b00538
- Ghanbarpour, A., Valverde, D. P., Melia, T. J., & Reinisch, K. M. (2021). A model for a partnership of lipid transfer proteins and scramblases in membrane expansion and organelle biogenesis. Proceedings of the National Academy of Sciences, 118, https:// doi.org/10.1073/pnas.2101562118
- Isom, G. L., Coudray, N., MacRae, M. R., McManus, C. T., Ekiert, D. C., & Bhabha, G. (2020). Letb structure reveals a tunnel for lipid transport across the bacterial envelope. Cell, 181, 653- 664.e19. https://doi.org/10.1016/j.cell.2020.03.030
- John Peter, A. T., van Schie, S. N. S., Cheung, N. J., Michel, A. H., Peter, M., & Kornmann, B. (2022). Rewiring phospholipid biosyn- thesis reveals resilience to membrane perturbations and uncovers regulators of lipid homeostasis. The EMBO Journal, 41, article no. e109998. https://doi.org/10.15252/embj.2021109998
- Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Zidek, A., Potapenko, A, Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A.J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., & , … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, https:// doi.org/10.1038/s41586-021-03819-2
- Landajuela, A., Hervas, J. H., Anton, Z., Montes, L. R., Gil, D., Valle, M., Rodriguez, J. F., Goni, F. M., & Alonso, A. (2016). Lipid geom- etry and bilayer curvature modulate LC3/GABARAP-mediated model autophagosomal elongation. Biophysical Journal, 110, 411- 422. https://doi.org/10.1016/j.bpj.2015.11.3524
- Maeda, S., Otomo, C., & Otomo, T. (2019). The autophagic mem- brane tether ATG2A transfers lipids between membranes. eLife, 8, https://doi.org/10.7554/eLife.45777
- Maeda, S., Yamamoto, H., Kinch, L. N., Garza, C. M., Takahashi, S., Otomo, C., Grishin, N. V., Forli, S., Mizushima, N., & Otomo, T. (2020). Structure, lipid scrambling activity and role in autophagosome formation of ATG9A. Nature Structural & Molecular Biology, 27, 1194-1201. https://doi.org/10.1038/ s41594-020-00520-2
- Martens, S., & Fracchiolla, D. (2020). Activation and targeting of ATG8 protein lipidation. Cell Discovery, 6, 23. https://doi.org/ 10.1038/s41421-020-0155-1
- Matoba, K., Kotani, T., Tsutsumi, A., Tsuji, T., Mori, T., Noshiro, D., Sugita, Y., Nomura, N., Iwata, S., & Ohsumi, Y. (2020). Atg9 is a lipid scramblase that mediates autophagosomal membrane expansion. Nature Structural & Molecular Biology, 27, 1185-1193. https://doi.org/10.1038/ s41594-020-00518-w
- Nishimura, T., & Tooze, S. A. (2020). Emerging roles of ATG pro- teins and membrane lipids in autophagosome formation. Cell Discovery, 6, 32. https://doi.org/10.1038/s41421-020-0161-3
- Osawa, T., Kotani, T., Kawaoka, T., Hirata, E., Suzuki, K., Nakatogawa, H., Ohsumi, Y., & Noda, N. N. (2019). Atg2 med- iates direct lipid transfer between membranes for autophago- some formation. Nature Structural & Molecular Biology, 26, 281-288. https://doi.org/10.1038/s41594-019-0203-4
- Petrungaro, C., & Kornmann, B. (2019). Lipid exchange at ER-mitochondria contact sites: A puzzle falling into place with quite a few pieces missing. Current Opinion in Cell Biology, 57, 71-76. https://doi.org/10.1016/j.ceb.2018.11.005
- Sakai, Y., Koyama-Honda, I., Tachikawa, M., Knorr, R. L., & Mizushima, N. (2020). Modeling membrane morphological change during autophagosome formation. iScience, 23, 101466. https://doi.org/10.1016/j.isci.2020.101466
- Sitarska, E., & Diz-Munoz, A. (2020). Pay attention to membrane tension: Mechanobiology of the cell surface. Current Opinion in Cell Biology, 66, 11-18. https://doi.org/10.1016/j.ceb.2020. 04.001
- Tunyasuvunakool, K., Adler, J., Wu, Z., Green, T., Zielinski, M., Zidek, A., Bridgland, A., Cowie, A., Meyer, C., Laydon, A., Velankar, S., Kleywegt, G. J., Bateman, A., Evans, R., Pritzel, A., Figurnov, M., Ronneberger, O., Bates, R., Kohl, S. A. A., & , … Hassabis, D. (2021). Highly accurate protein structure prediction for the human proteome. Nature, 596, 590-596. https://doi.org/10.1038/s41586-021-03828-1
- Valverde, D. P., Yu, S., Boggavarapu, V., Kumar, N., Lees, J. A., Walz, T., Reinisch, K. M., & Melia, T. J. (2019). ATG2 Transports lipids to promote autophagosome biogenesis. Journal of Cell Biology, 218, 1787-1798. https://doi.org/10. 1083/jcb.201811139
- Wong, L. H., Copic, A., & Levine, T. P. (2017). Advances on the transfer of lipids by lipid transfer proteins. Trends in Biochemical Sciences, 42, 516-530. https://doi.org/10.1016/j. tibs.2017.05.001
- Zhang, Y., Ge, J., Bian, X., & Kumar, A. (2022). Quantitative models of lipid transfer and membrane contact formation. Contact (Geneva, Switzerland), 5, article no. 25152564221096024. https://doi.org/10.1177/25152564221096024