Abstract
In a study of debris flow susceptibility on the European continent, an analysis of the impact between known location and a location accuracy offset for 99 debris flows, demonstrates the impact of uncertainty in defining appropriate predisposing factors, and consequent analysis for areas of susceptibility. The dominant predisposing environmental factors, as determined through Maximum Entropy modeling, are presented, and analyzed with respect to the values found at debris flow event points versus a buffered distance of locational uncertainty around each point. Five Maximum Entropy susceptibility models are developed utilizing the original debris flow inventory of points, randomly generated points, and two models utilizing a subset of points with an uncertainty of 5 km, 1 km, and a model utilizing only points with a known location of "exact". The AUCs are 0.891, 0.893, 0.896, 0.921, and 0.93, respectively. The "exact" model, with the highest AUC, is ignored in final analyses due to the small number of points, and localized distribution, and hence susceptibility results likely non-representational of the continent. Each model is analyzed with respect to the AUC, highest contributing factors, factor classes, susceptibility impact, and comparisons of the susceptibility distributions and susceptibility value differences. Based on model comparisons, geographic extent and context of this study, the models utilizing points with a location uncertainty of less than or equal to 5 km best represent debris flow susceptibility of the continent of Europe. A novel representation of the uncertainty is expressed, and included in a final susceptibility map, as an overlay of standard deviation and mean of susceptibility values for the two best models, providing additional insight for subsequent action.
References (36)
- Ardizzone, F., Cardinali, M., Carrara, A., Guzzetti, F., and Reichenbach, P.: Impact of mapping errors on the reliability of landslide hazard maps, Natural Hazards and Earth System Sciences, 2, 3-14, DOI 10.5194/nhess-2-3- 2002, 2002.
- Brabb, E. E., Colgan, J. P., and Best, T. C.: Map showing inventory and regional susceptibility for Holocene debris flows and related fast-moving landslides in the conterminous United States, 10.3133/mf2329, 1999. Bridges, E. M.: World Geomorphology, Cambridge University Press, Cambridge, 10.1017/cbo9781139170154, 2012. Brighenti, R., Segalini, A., and Ferrero, A. M.: Debris flow hazard mitigation: A simplified analytical model for the design of flexible barriers, Computers and Geotechnics, 54, 1-15, 10.1016/j.compgeo.2013.05.010, 2013.
- Campbell, R. H.: Debris flows originating from soil slips during rainstorms in Southern California, Journal of Engineering Geology, 7, 339-349, 1974.
- Carrara, A., Cardinali, M., and Guzzetti, F.: Uncertainty in assessing landslide hazard and risk, ITC Journal, 2, 172- 183, 1992.
- Chrisman, N.: Modeling error in overlaid categorical maps, in: The Accuracy of Spatial Databases, edited by: Goodchild, M., and Gopal, S., Taylor & Francis, Pennsylvania, 21-43, 1989. https://doi.org/10.5194/nhess-2021-364 Preprint. Discussion started: 15 December 2021 c Author(s) 2021. CC BY 4.0 License.
- Convertino, M., Troccoli, A., and Catani, F.: Detecting fingerprints of landslide drivers: A MaxEnt model, Journnal of Geophysical Research: Earth Surface, 118, 1367-1386, 10.1002/jgrf.20099,, 2013.
- Costa, J. E.: Physical Geomorphology of Debris Flows, in: Developments and Applications of Geomorphology, edited by: Costa, J. E., and Fleisher, P. J., Springer Berlin Heidelberg, Berlin, Heidelberg, 268-317, 10.1007/978-3- 642-69759-3_9, 1984.
- Devkota, K. C., Regmi, A. D., Pourghasemi, H. R., Yoshida, K., Pradhan, B., Ryu, I. C., Dhital, M. R., and Althuwaynee, O. F.: Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya, Natural Hazards, 65, 135-165, 10.1007/s11069-012-0347-6, 2012.
- Dou, J., Tien Bui, D., Yunus, A. P., Jia, K., Song, X., Revhaug, I., Xia, H., and Zhu, Z.: Optimization of Causative Factors for Landslide Susceptibility Evaluation Using Remote Sensing and GIS Data in Parts of Niigata, Japan, PLoS One, 10, e0133262, 10.1371/journal.pone.0133262, 2015.
- Dowling, C. A. and Santi, P. M.: Debris flows and their toll on human life: a global analysis of debris-flow fatalities from 1950 to 2011, Natural Hazards, 71, 203-227, 10.1007/s11069-013-0907-4, 2013.
- Esri, I.: ArcGIS Pro (Version 2.7), Esri, Inc. [code], 2020.
- Froude, M. J. and Petley, D. N.: Global fatal landslide occurrence from 2004 to 2016, Natural Hazards and Earth System Sciences, 18, 2161-2181, 10.5194/nhess-18-2161-2018, 2018.
- Froude, M. J. and Petley, D. N.: Guide to the Global Fatal Landslide Database on ArcGIS Online [dataset], 2019. GÁL, A., Poszet, S. L., and Kerekes, A. H.: Landslide susceptibility assessment using the maximum entropy model in a sector of the Cluj-Napoca Municipality, Romania, Revista de Geomorfologie, 20, 130-146, 10.21094/rg.2018.039, 2018.
- Grozavu, A. and Patriche, C. V.: Landslide Susceptibility Assessment: GIS Application to a Complex Mountainus Environment, 10.1007/978-3-642-12725-0_4, 2013.
- Gunther, A., Reichenbach, P., Guzzetti, F., and Richter, A.: Criteria for the identification of landslide risk areas in Europe: the Tier 1 approach, Joint Research Center, Institute for Environment and Sustainability, European Commission, Luxembourg, 37-40, 10.2788/63147, 2007.
- Highland, L. M. and Bobrowsky, P.: The Landslide Handbook -A Guide to Understanding Landslides, 2008. Hunter, G. J.: Managing uncertainty in GIS, Geographical Information Systems, 2, 633-641, 1999.
- Hunter, G. J. and Goodchild, M.: Communicating uncertainty in spatial databases, Transactions in GIS, 1, 13-24, doi:10.1111/j.1467-9671.1996.tb00030.x, 1996. Hunter, G. J., Goodchild, M., and Robey, M.: A Toolbox for Assessing Uncertainty in Spatial Databases, 22nd Annual Conference of the Australasian Urban and Regional Information Systems Association, Inc., Sydney1994. ISPRA: World Landslides Forum: Each year, landslide cause damage to 6 billion Euros, 2020.
- Iverson, R. M.: The Physics of Debris Flows, American Geophysical Union, 35, 245-296, 1997.
- Kirschbaum, D. and Stanley, T.: Satellite-Based Assessment of Rainfall-Triggered Landslide Hazard for Situational Awareness, Earth's Future, 6, 505-523, 10.1002/2017ef000715, 2018.
- Kirschbaum, D., Stanley, T., and Zhou, Y. P.: Spatial and temporal analysis of a global landslide catalog, Geomorphology, 249, 4-15, 10.1016/j.geomorph.2015.03.016, 2015.
- Kornejady, A., Ownegh, M., and Bahremand, A.: Landslide susceptibility assessment using maximum entropy model with two different data sampling methods, Catena, 152, 144-162, 10.1016/j.catena.2017.01.010, 2017. Lombardo, L., Fubelli, G., Amato, G., and Bonasera, M.: Presence-only approach to assess landslide triggering- thickness susceptibility: a test for the Mili catchment (north-eastern Sicily, Italy), Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 84, 565-588, 2016. https://doi.org/10.5194/nhess-2021-364 Preprint. Discussion started: 15 December 2021 c Author(s) 2021. CC BY 4.0 License.
- Lorente, A., García-Ruiz, J. M., Beguería, S., and Arnáez, J.: Factors Explaining the Spatial Distribution of Hillslope Debris Flows, Mountain Research and Development, 22, 32-39, 10.1659/0276- 4741(2002)022[0032:Fetsdo]2.0.Co;2, 2002.
- Maffini, G., Arno, M., and Bitterlich, W.: Observations and comments on the generation and treatment of error in digital GIS data, in: Accuracy of Spatial Databases, edited by: Goodchild, M., and Gopal, S., Taylor and Francis, Philadelphia, 55-68, 1989.
- Malamud, B. D., Turcotte, D. L., Guzzetti, F., and Reichenbach, P.: Landslide inventories and their statistical properties, Earth Surface Processes and Landforms, 29, 687-711, 10.1002/esp.1064, 2004.
- Meten, M., PrakashBhandary, N., and Yatabe, R.: Effect of Landslide Factor Combinations on the Prediction Accuracy of Landslide Susceptibility Maps in the Blue Nile Gorge of Central Ethiopia, Geoenvironmental Disasters, 2, 10.1186/s40677-015-0016-7, 2015.
- Nettleton, I. M., Martin, S., Hencher, S., and Moore, R.: Debris Flow Types and Mechanisms, in: Scottish Road Network Landslide Study Scotland, 2005.
- Nsengiyumva, J. B., Luo, G., Nahayo, L., Huang, X., and Cai, P.: Landslide Susceptibility Assessment Using Spatial Multi-Criteria Evaluation Model in Rwanda, Int J Environ Res Public Health, 15, 10.3390/ijerph15020243, 2018.
- Openshaw, S.: Learning to live with errors in spatial databases, in: Accuracy of Spatial Databases, edited by: Goodchild, M., and Gopal, S., Taylor and Francis, Philadelphia, 263-276, 1989. Park, N.-W.: Using maximum entropy modeling for landslide susceptibility mapping with multiple geoenvironmental data sets, Environmental Earth Sciences, 73, 937-949, 10.1007/s12665-014-3442-z, 2014. Phillips, S. and Dudik, M.: Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation, Ecography, 31, 161-175, 10.1111/j.2007.0906-7590.05203.x, 2008.
- Phillips, S., Dudik, M., and Schapire, R. E.: Maxent software for modeling species niches and distributions (Version 3.4.1) [code], 2021. Ritchie, H. and Roser, M.: Urbanization, 2018.
- Shi, W.: Principles of Modeling Uncertainties in Spatial Data and Spatial Analyses, CRC Press, Florida2010.
- Soma, A.: Landslide susceptibility Map using Certainty Factor for Mitigation in Mountainous Area of Ujung-Loe Watershed South Sulawesi Indonesia, 2018.
- Styron, R. and Pagani, M.: The GEM Global Active Faults Database, Earthquake Spectra, 36, 160-180, 10.1177/8755293020944182, 2020.
- Toth, G., Montanarell, L., Stolbovoy, F., Bodis, K., Jones, A., Panagos, P., and Liedekerke, M.: Soils of the European Union, European Commissiono Joint Research Centre Institute for Environment and Sustainability, Italy1018- 5593, 10.2788/87029, 2008. Veregin, H.: Error modeling for the map overlay operation, in: The Accuracy of Spatial Databases, edited by: Goodchild, M., and Gopal, S., Taylor & Francis, Pennsylvania, 3-18, 1989.
- Wechsler, S. P.: Digital Elevation Model (DEM) Uncertainty: Evaluation and Effect on Topographic Parameters, ESRI User Conference, San Diego, CA USA1999.
- Yuan, S., Huang, G., Xiong, H., Gong, Q., Wang, J., and Chen, J.: Maximum Entropy-Based Model of High-Threat Landslide Disaster Distribution in Zhaoqing, China, Journal of Risk Analysis and Crisis Response, 7, 108-126, 2017.
- Zufle, A., Trajcevski, G., Pfoser, D., Renz, M., Rice, M. T., Leslie, T., Delamater, P., and Emrich, T.: Handling Uncertainty in Geo-Spatial Data, 2017 IEEE 33rd International Conference on Data Engineering (ICDE), 10.1109/icde.2017.212, 2017. https://doi.org/10.5194/nhess-2021-364 Preprint. Discussion started: 15 December 2021 c Author(s) 2021. CC BY 4.0 License.