Academia.eduAcademia.edu

Outline

Bootstrap methods for stationary functional time series

2016, Statistics and Computing

https://doi.org/10.1007/S11222-016-9712-8

Abstract

Bootstrap methods for estimating the long-run covariance of stationary functional time series are considered. We introduce a versatile bootstrap method that relies on functional principal component analysis, where principal component scores can be bootstrapped by maximum entropy. Two other bootstrap methods resample error functions, after the dependence structure being modeled linearly by a sieve method or nonlinearly by a functional kernel regression. Through a series of Monte-Carlo simulation, we evaluate and compare the finite-sample performances of these three bootstrap methods for estimating the long-run covariance in a functional time series. Using the intraday particulate matter (PM 10) data set in Graz, the proposed bootstrap methods provide a way of constructing the distribution of estimated long-run covariance for functional time series.

References (48)

  1. Benko, M., Härdle, W. & Kneip, A. (2009), 'Common functional principal components', Annals of Statistics 37(1), 1-34.
  2. Berlinet, A., Elamine, A. & Mas, A. (2011), 'Local linear regression for functional data', Annals of the Institute of Statistical Mathematics 63(5), 1047-1075.
  3. Boj, E., Delicado, P. & Fortiana, J. (2010), 'Distance-based local linear regression for functional predictors', Computational Statistics & Data Analysis 54(2), 429-437.
  4. Bosq, D. (2000), Linear Processes in Function Spaces, Lecture notes in Statistics, New York.
  5. Cuevas, A., Febrero, M. & Fraiman, R. (2006), 'On the use of the bootstrap for estimating functions with functional data', Computational Statistics & Data Analysis 51(2), 1063-1074.
  6. Davidson, R. & MacKinnon, J. G. (2007), 'Improving the reliability of bootstrap tests with the fast double bootstrap', Computational Statistics and Data Analysis 51(7), 3259-3281.
  7. Ferraty, F., Goia, A. & Vieu, P. (2002), 'Functional nonparameteric model for time series: A fractal approach for dimension reduction', Test 11(2), 317-344.
  8. Ferraty, F. & Vieu, P. (2006), Nonparametric Functional Data Analysis, Springer, New York.
  9. Franke, J. & Nyarige, E. G. (2016), A residual-based bootstrap for functional autoregressions, Working paper, University of Kaiserslautern.
  10. Gneiting, T. & Katzfuss, M. (2014), 'Probabilistic forecasting', The Annual Review of Statistics and Its Application 1, 125-151.
  11. Gneiting, T. & Raftery, A. E. (2007), 'Strictly proper scoring rules, prediction and estimation', Journal of the American Statistical Association 102(477), 359-378.
  12. Goldsmith, J., Greven, S. & Crainiceanu, C. (2013), 'Corrected confidence bands for functional data using principal components', Biometrics 69(1), 41-51.
  13. Hall, P. & Hosseini-Nasab, M. (2006), 'On properties of functional principal components analysis', Journal of the Royal Statistical Society (Series B) 68(1), 109-126.
  14. H örmann, S., Kidzi ński, L. & Hallin, M. (2015), 'Dynamic functional principal components', Journal of Royal Statistical Society: Series B 77(2), 319-348.
  15. H örmann, S. & Kokoszka, P. (2012), Functional time series, in T. S. Rao, S. S. Rao & C. R. Rao, eds, 'Time Series Analysis: Methods and Applications', Vol. 30 of Handbook of Statistics, North Holland, London.
  16. Horváth, L., Kokoszka, P. & Rice, G. (2014), 'Testing stationarity of functional time series', Journal of Econometrics 179(1), 66-82.
  17. Horváth, L., Rice, G. & Whipple, S. (2016), 'Adaptive bandwidth selection in the long run covariance estimator of functional time series', Computational Statistics & Data Analysis 100, 676-693.
  18. Hyndman, R. & Ullah, M. (2007), 'Robust forecasting of mortality and fertility rates: A func- tional data approach', Computational Statistics & Data Analysis 51(10), 4942-4956.
  19. Klepsch, J. & Kl üppelberg, C. (2016), An innovations algorithm for the prediction of functional linear processes, Working paper, Technische Universität M ünchen. URL: https://arxiv. org/abs/1607.05874.
  20. Klepsch, J., Kl üppelberg, C. & Wei, T. (2016), Prediction of functional ARMA processes with an application to traffic data, Technical report, Technische Universität M ünchen. URL: https://arxiv.org/pdf/1603.02049v1.pdf.
  21. Kokoszka, P. & Reimherr, M. (2013), 'Determining the order of the functional autoregressive model', Journal of Time Series Analysis 34(1), 116-129.
  22. Kokoszka, P. & Zhang, X. (2012), 'Functional prediction of intraday cumulative returns', Statistical Modelling 12(4), 377-398.
  23. Kudraszow, N. L. & Vieu, P. (2013), 'Uniform consistency of kNN regressors for functional variables', Statistics and Probability Letters 83(8), 1863-1870.
  24. Lahiri, S. N. (2003), Resampling Methods for Dependent Data, Springer, New York.
  25. Li, D., Robinson, P. M. & Shang, H. L. (2016), Long-range dependent curve time series, Working paper, University of York.
  26. Masry, E. (2005), 'Nonparametric regression estimation for dependent functional data: Asymp- totic normality', Stochastic Processes and their Applications 115(1), 155-177.
  27. McMurry, T. & Politis, D. (2011), Resampling methods for functional data, in F. Ferraty & Y. Romain, eds, 'The Oxford Handbook of Functional Data Analysis', Oxford University Press, New York, pp. 189-209.
  28. Paparoditis, E. (2016), Sieve bootstrap for functional time series, Working paper, University of Cyprus. URL: https://arxiv.org/abs/1609.06029.
  29. Paparoditis, E. & Politis, D. N. (2000), 'The local bootstrap for kernel estimator under general dependence conditions', Annals of the Institute of Statistical Mathematics 52(1), 139-159.
  30. Paparoditis, E. & Sapatinas, T. (2015), Bootstrap-based K-sample testing for functional data, Working paper, University of Cyprus. URL: https://arxiv.org/pdf/1409.4317.pdf.
  31. Politis, D. N. (2003), 'The impact of bootstrap methods on time series analysis', Statistical Science 18(2), 219-230.
  32. Politis, D. N. & Romano, J. P. (1994), 'The stationary bootstrap', Journal of the American Statistical Association 89, 1303-1313.
  33. Politis, D. N. & Romano, J. P. (1996), 'On flat-top spectral density eestimator for homogeneous random fields', Journal of Statistical Planning and Inference 51(41-53).
  34. Politis, D. N., Romano, J. P. & Wolf, M. (1999), Subsampling, Springer, New York.
  35. R Core Team (2016), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. URL: http://www.R-project.org/.
  36. Ra ña, P., Aneiros, G. & Vilar, J. M. (2015), 'Detection of outliers in functional time series', Environmetrics 26(3), 178-191.
  37. Ra ña, P., Aneiros, G., Vilar, J. & Vieu, P. (2016), 'Bootstrap confidence intervals in functional nonparametric regression under dependence', Electronic Journal of Statistics 10(2), 1973-1999.
  38. Ramsay, J. & Silverman, B. (2005), Functional Data Analysis, 2nd edn, Springer Series in Statistics, New York.
  39. Rice, G. & Shang, H. L. (2016), A plug-in bandwidth selection procedure for long run covariance estimation with stationary functional time series, Working paper, University of Waterloo. URL: https://arxiv.org/abs/1604.02724.
  40. Salish, N. & Gleim, A. (2015), Forecasting methods for functional time series, Working paper, University of Bonn. URL: http://www.eco.uc3m.es/temp/paper%20Salish.pdf.
  41. Shang, H. L. (2015), 'Resampling techniques for estimating the distribution of descriptive statis- tics of functional data', Communications in Statistics -Simulation and Computation 44(3), 614- 635.
  42. Shang, H. L. & Hyndman, R. J. (2011), 'Nonparametric time series forecasting with dynamic updating', Mathematics and Computers in Simulation 81(7), 1310-1324.
  43. Shannon, C. E. (1948), 'A mathematical theory of communications', The Bell System Technical Journal 27, 379-423 and 623-656.
  44. Vinod, H. D. (2004), 'Ranking mutual funds using unconventional utility theory and stochastic dominance', Journal of Empirical Finance 11(3), 353-377.
  45. Vinod, H. D. (2013), Maximum entropy bootstrap algorithm enhancements, Technical re- port, Fordham University. URL: http://papers.ssrn.com/sol3/papers.cfm?abstract_ id=2285041.
  46. Vinod, H. D. & de Lacalle, J. L. (2009), 'Maximum entropy bootstrap for time series: the meboot R package', Journal of Statistical Software 29(5).
  47. Yao, F., M üller, H.-G. & Wang, J. (2005), 'Functional data analysis for sparse longitudinal data', Journal of the American Statistical Association 100(470), 577-590.
  48. Zhu, T. & Politis, D. (2016), Kernel estimation of first-order nonparametric functional autore- gression model and its bootstrap approximation, Working paper, University of California, San Diego.