Geometry and Arithmetic on the Siegel–Jacobi Space
2015, Progress in Mathematics
https://doi.org/10.1007/978-3-319-11523-8_10Abstract
The Siegel-Jacobi space is a non-symmetric homogeneous space which is very important geometrically and arithmetically. In this paper, we discuss the theory of the geometry and the arithmetic of the Siegel-Jacobi space. To the memory of my teacher, Professor Shoshichi Kobayashi Table of Contents 1. Introduction 2. Invariant Metrics and Laplacians on the Siegel-Jacobi Space 3. Invariant Differential Operators on the Siegel-Jacobi Space 4. The Partial Cayley Transform 5. Invariant Metrics and Laplacians on the Siegel-Jacobi Disk 6. A Fundamental Domain for the Siegel-Jacobi Space 7. Jacobi Forms 8. Singular Jacobi Forms 9. The Siegel-Jacobi Operator 10. Construction of Vector-Valued Modular Forms from Jacobi Forms 11. Maass-Jacobi Forms 12 The Schrödinger-Weil Representation 13. Final Remarks and Open Problems
References (83)
- A. N. Andrianov, Modular descent and the Saito-Kurokawa lift, Invent. Math. 289, Springer-Verlag (1987).
- E. Balslev, Spectral theory of the Laplacian on the modular Jacobi group manifold, preprint, Aarhus University (2012).
- R. Berndt, Zur Arithmetik der elliptischen Funktionenkörper höherer Stufe, J. reine angew. Math., 326(1981), 79-94.
- R. Berndt, Meromorphic Funktionen auf Mumfords Kompaktifizierung der universellen elliptischen Kurve N -ter Stufe, J. reine angew. Math., 326(1981), 95-103.
- R. Berndt, Shimuras Reziprozitätsgesetz für den Körper der arithmetischen elliptischen Funktionen beliebiger Stufe , J. reine angew. Math., 343(1983), 123-145.
- R. Berndt, Die Jacobigruppe und die Wärmeleitungsgleichung , Math. Z., 191(1986), 351-361.
- R. Berndt, The Continuous Part of L 2 (Γ J \G J ) for the Jacobi Group, Abh. Math. Sem. Univ. Hamburg., 60(1990), 225-248.
- R. Berndt and S. Böcherer, Jacobi Forms and Discrete Series Representations of the Jacobi Group, Math. Z., 204(1990), 13-44.
- R. Berndt, On Automorphic Forms for the Jacobi Group, Jb. d. Dt. Math.-Verein., 97(1995), 1-18.
- R. Berndt and R. Schmidt, Elements of the Representation Theory of the Jacobi Group, Birkhäuser, 1998.
- D. Bump and Y. J. Choie, Derivatives of modular forms of negative weight, Pure Appl. Math. Q. 2 (2006), no. 1, 111-133.
- M. Eichler and D. Zagier, The Theory of Jacobi Forms, Progress in Mathematics 55, Birkhäuser, Boston, Basel and Stuttgart, 1985.
- A. J. Feingold and I. B. Frenkel, A Hyperbolic Kac-Moody Algebra and the Theory of Siegel Modular Forms of genus 2, Math. Ann., 263(1983), 87-144.
- E. Freitag, Stabile Modulformen, Math. Ann. 230 (1977), 162-170.
- E. Freitag, Siegelsche Modulfunktionen, Grundlehren de mathematischen Wissenschaften 55, Springer- Verlag, Berlin-Heidelberg-New York (1983).
- S. Gelbart, Weil's Representation and the Spectrum of the Metaplectic Group, Lecture Notes in Math. 530, Springer-Verlag, Berlin and New York, 1976.
- V. A. Gritsenko, The action of modular operators on the Fourier-Jacobi coefficients of modular forms, Math. USSR Sbornik, 74(1984), 237-268.
- Harish-Chandra, Representations of a semisimple Lie group on a Banach space. I., Trans. Amer. Math. Soc. 75 (1953), 185-243.
- Harish-Chandra, The characters of semisimple Lie groups, Trans. Amer. Math. Soc. 83 (1956), 98-163.
- S. Helgason, Differential operators on homogeneous spaces, Acta Math. 102 (1959), 239-299.
- S. Helgason, Groups and geometric analysis, Academic Press, New York (1984).
- R. Howe, Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond, The Schur lectures (1992) (Tel Aviv), Israel Math. Conf. Proceedings, vol. 8 (1995), 1-182.
- J. Igusa, Theta Functions, Springer-Verlag, Berlin-Heidelberg-New York (1971).
- T. Ikeda, On the lifting of elliptic cusp forms to Siegel cusp forms of degree 2n, Ann. Math. 154 (2001), 641-681.
- T. Ikeda, Pullback of the lifting of elliptic cusp forms and Miyawaki's conjecture, Duke Math. J. 131 (2006), no. 3, 469-497.
- M. Itoh, H. Ochiai and J.-H. Yang, Invariant differential operators on Siegel-Jacobi space, preprint (2013).
- C. G. J. Jacobi, Fundamenta nova theoriae functionum ellipticum, Königsberg, (1829).
- M. Kashiwara and M. Vergne, On the Segal-Shale-Weil Representations and Harmonic Polynomials, Invent. Math. 44 (1978), 1-47.
- W. Kohnen, Modular forms of half-integral weight on Γ0(4), Math. Ann. 248 (1980), 249-266.
- W. Kohnen, Lifting modular forms of half-integral weight to Siegel modular forms of even degree, Math. Ann. 322 (2003), 787-809.
- A. Korányi and J. Wolf, Generalized Cayley transformations of bounded symmetric domains, Amer. J. Math. 87 (1965), 899-939.
- J. Kramer, A geometrical approach to the theory of Jacobi forms, Compositio Math., 79(1991), 1-19.
- J. Kramer, An arithmetic theory of Jacobi forms in higher dimensions , J. reine angew. Math., 458(1995), 157-182.
- N. V. Kuznetsov, A new class of identities for the Fourier coefficients of modular forms, Acta Arith. (1975), 505-519.
- G. Lion and M. Vergne, The Weil representation, Maslov index and Theta series, Progress in Mathe- matics, 6, Birkhäuser, Boston, Basel and Stuttgart, 1980.
- J. Marklof, Pair correlation densities of inhomogeneous quadratic forms, Ann. of Math., 158 (2003), 419-471.
- H. Maass, Die Differentialgleichungen in der Theorie der Siegelschen Modulfunktionen, Math. Ann. 126 (1953), 44-68.
- H. Maass, Siegel modular forms and Dirichlet series, Lecture Notes in Math. 216, Springer-Verlag, Berlin-Heidelberg-New York (1971).
- H. Maass, Über eine Spezialschar von Modulformen zweiten Grades I, Invent. Math. 52 (1979), 95-104.
- H. Maass, Über eine Spezialschar von Modulformen zweiten Grades II, Invent. Math. 53 (1979), 249-253.
- H. Maass, Über eine Spezialschar von Modulformen zweiten Grades III, Invent. Math. 53 (1979), 255- 265.
- H. Minkowski, Gesammelte Abhandlungen: Chelsea, New York (1967).
- D. Mumford, Hirzebruch's Proportionality Theorem in the Non-Compact Case, Invent. Math. 42 (1977), 239-272.
- D. Mumford, Tata Lectures on Theta I, Progress in Mathematics, 28, Birkhäuser, Boston, Basel and Stuttgart, 1983.
- D. Mumford, M. Nori and P. Norman, Tata Lectures on Theta III, 97, Birkhäuser, Boston, Basel and Stuttgart, 1991.
- A. Murase, L-functions attached to Jacobi forms of degree n. Part I : The Basic Identity, J. reine angew. Math., 401 (1989), 122-156.
- A. Murase, L-functions attached to Jacobi forms of degree n. Part II : Functional Equation, Math. Ann., 290 (1991), 247-276.
- A. Murase and T. Sugano, Whittaker-Shintani Functions on the Symplectic Group of Fourier-Jacobi Type, Compositio Math., 79 (1991), 321-349.
- I. Piateski-Sharpiro, Automorphic Functions and the Geometry of Classical Domains, Gordan-Breach, New York (1966).
- A. Pitale, Jacobi Maass forms, Abh. Math. Sem. Univ. Hamburg 79 (2009), 87-111.
- B. Runge, Theta functions and Siegel-Jacobi functions, Acta Math., 175 (1995), 165-196.
- I. Satake, Fock Representations and Theta Functions, Ann. Math. Studies, 66 (1971), 393-405.
- I. Satake, Algebraic Structures of Symmetric Domains, Kano Memorial Lectures 4, Iwanami Shoton, Publishers and Princeton University Press (1980).
- G. Shimura, On modular forms of half integral weight , Ann. of Math. 97 (1973), 440-481.
- G. Shimura, On certain reciprocity laws for theta functions and modular forms, Acta Math. 141 (1979), 35-71.
- G. Shimura, Invariant differential operators on hermitian symmetric spaces, Ann. Math. 132 (1990), 237-272.
- C. L. Siegel, Symplectic Geometry, Amer. J. Math. 65 (1943), 1-86; Academic Press, New York and London (1964);
- Gesammelte Abhandlungen, no. 41, vol. II, Springer-Verlag (1966), 274-359.
- C. L. Siegel, Gesammelte Abhandlungen I-IV, Springer-Verlag(I-III: 1966; IV: 1979).
- C. L. Siegel, Topics in Complex Function Theory : Abelian Functions and Modular Functions of Several Variables, vol. III, Wiley-Interscience, 1973.
- Y.-S. Tai, On the Kodaira Dimension of the Moduli Space of Abelian Varieties, Invent. Math. 68 (1982), 425-439.
- H. Weyl, The classical groups: Their invariants and representations, Princeton Univ. Press, Princeton, New Jersey, second edition (1946).
- J.-H. Yang, The Siegel-Jacobi Operator, Abh. Math. Sem. Univ. Hamburg 63 (1993), 135-146.
- J.-H. Yang, Vanishing theorems on Jacobi forms of higher degree, J. Korean Math. Soc., 30(1)(1993), 185-198.
- J.-H. Yang, Remarks on Jacobi forms of higher degree, Proc. of the 1993 Workshop on Automorphic Forms and Related Topics, edited by Jin-Woo Son and Jae-Hyun Yang, the Pyungsan Institute for Mathematical Sciences, (1993), 33-58.
- J.-H. Yang, Singular Jacobi Forms, Trans. Amer. Math. Soc. 347 (6) (1995), 2041-2049.
- J.-H. Yang, Construction of vector valued modular forms from Jacobi forms, Canadian J. of Math. 47 (6) (1995), 1329-1339.
- J.-H. Yang, Kac-Moody algebras, the monstrous moonshine, Jacobi forms and infinite products, Proceed- ings of the 1995 Symposium on Number theory, geometry and related topics, the Pyungsan Institute for Mathematical Sciences (1996), 13-82 or arXiv:math.NT/0612474.
- J.-H. Yang, A geometrical theory of Jacobi forms of higher degree, Proceedings of Symposium on Hodge Theory and Algebraic Geometry ( edited by Tadao Oda ), Sendai, Japan (1996), 125-147 or Kyungpook Math. J. 40 (2) (2000), 209-237 or arXiv:math.NT/0602267.
- J.-H. Yang, The Method of Orbits for Real Lie Groups, Kyungpook Math. J. 42 (2) (2002), 199-272 or arXiv:math.RT/0602056.
- J.-H. Yang, A note on a fundamental domain for Siegel-Jacobi space, Houston Journal of Mathematics 32 (3) (2006), 701-712.
- J.-H. Yang, Invariant metrics and Laplacians on Siegel-Jacobi space, Journal of Number Theory 127 (2007), 83-102.
- J.-H. Yang, A partial Cayley transform for Siegel-Jacobi disk, J. Korean Math. Soc. 45, No. 3 (2008), 781-794.
- J.-H. Yang, Invariant metrics and Laplacians on Siegel-Jacobi disk, Chinese Annals of Mathematics, Vol. 31B(1), 2010, 85-100.
- J.-H. Yang, A Note on Maass-Jacobi Forms, Kyungpook Math. J. 43, no. 4 (2003), 547-566.
- J.-H. Yang, A Note on Maass-Jacobi Forms II, Kyungpook Math. J. 53, no. 1 (2013), 49-86.
- J.-H. Yang, Y.-H. Yong, S.-N. Huh, J.-H. Shin and G.-H. Min, Sectional Curvatures of the Siegel-Jacobi Space, Bull. Korean Math. Soc. 50 (2013), No. 3, pp. 787-799.
- J.-H. Yang, Invariant differential operators on the Minkowski-Euclid space, J. Korean Math. Soc. 50, No. 2 (2013), 275-306.
- J.-H. Yang, The Schrödinger-Weil representation and theta sums, preprint (2013).
- J. Yang and L. Yin, Derivation of Jacobi forms from connections, arXiv:1301.1156v1 [math.NT] 7 Jan 2013.
- D. Zagier, Sur la conjecture de Saito-Kurokawa (d'après H. Maass): Seminaire Delange-Pisot-Poitou, Paris, 1979-80, Progress in Mathematics 12, Birkhäuser, Boston, Basel and Stuttgart (1981), 371-394.
- N. A. Zharkovskaya, The Siegel operator and Hecke operators, Functional Anal. Appl. 8 (1974), 113-120.
- C. Ziegler, Jacobi Forms of Higher Degree, Abh. Math. Sem. Hamburg 59 (1989), 191-224. Department of Mathematics, Inha University, Incheon 402-751, Korea E-mail address: jhyang@inha.ac.kr