Academia.eduAcademia.edu

Outline

Geometry and Arithmetic on the Siegel–Jacobi Space

2015, Progress in Mathematics

https://doi.org/10.1007/978-3-319-11523-8_10

Abstract

The Siegel-Jacobi space is a non-symmetric homogeneous space which is very important geometrically and arithmetically. In this paper, we discuss the theory of the geometry and the arithmetic of the Siegel-Jacobi space. To the memory of my teacher, Professor Shoshichi Kobayashi Table of Contents 1. Introduction 2. Invariant Metrics and Laplacians on the Siegel-Jacobi Space 3. Invariant Differential Operators on the Siegel-Jacobi Space 4. The Partial Cayley Transform 5. Invariant Metrics and Laplacians on the Siegel-Jacobi Disk 6. A Fundamental Domain for the Siegel-Jacobi Space 7. Jacobi Forms 8. Singular Jacobi Forms 9. The Siegel-Jacobi Operator 10. Construction of Vector-Valued Modular Forms from Jacobi Forms 11. Maass-Jacobi Forms 12 The Schrödinger-Weil Representation 13. Final Remarks and Open Problems

References (83)

  1. A. N. Andrianov, Modular descent and the Saito-Kurokawa lift, Invent. Math. 289, Springer-Verlag (1987).
  2. E. Balslev, Spectral theory of the Laplacian on the modular Jacobi group manifold, preprint, Aarhus University (2012).
  3. R. Berndt, Zur Arithmetik der elliptischen Funktionenkörper höherer Stufe, J. reine angew. Math., 326(1981), 79-94.
  4. R. Berndt, Meromorphic Funktionen auf Mumfords Kompaktifizierung der universellen elliptischen Kurve N -ter Stufe, J. reine angew. Math., 326(1981), 95-103.
  5. R. Berndt, Shimuras Reziprozitätsgesetz für den Körper der arithmetischen elliptischen Funktionen beliebiger Stufe , J. reine angew. Math., 343(1983), 123-145.
  6. R. Berndt, Die Jacobigruppe und die Wärmeleitungsgleichung , Math. Z., 191(1986), 351-361.
  7. R. Berndt, The Continuous Part of L 2 (Γ J \G J ) for the Jacobi Group, Abh. Math. Sem. Univ. Hamburg., 60(1990), 225-248.
  8. R. Berndt and S. Böcherer, Jacobi Forms and Discrete Series Representations of the Jacobi Group, Math. Z., 204(1990), 13-44.
  9. R. Berndt, On Automorphic Forms for the Jacobi Group, Jb. d. Dt. Math.-Verein., 97(1995), 1-18.
  10. R. Berndt and R. Schmidt, Elements of the Representation Theory of the Jacobi Group, Birkhäuser, 1998.
  11. D. Bump and Y. J. Choie, Derivatives of modular forms of negative weight, Pure Appl. Math. Q. 2 (2006), no. 1, 111-133.
  12. M. Eichler and D. Zagier, The Theory of Jacobi Forms, Progress in Mathematics 55, Birkhäuser, Boston, Basel and Stuttgart, 1985.
  13. A. J. Feingold and I. B. Frenkel, A Hyperbolic Kac-Moody Algebra and the Theory of Siegel Modular Forms of genus 2, Math. Ann., 263(1983), 87-144.
  14. E. Freitag, Stabile Modulformen, Math. Ann. 230 (1977), 162-170.
  15. E. Freitag, Siegelsche Modulfunktionen, Grundlehren de mathematischen Wissenschaften 55, Springer- Verlag, Berlin-Heidelberg-New York (1983).
  16. S. Gelbart, Weil's Representation and the Spectrum of the Metaplectic Group, Lecture Notes in Math. 530, Springer-Verlag, Berlin and New York, 1976.
  17. V. A. Gritsenko, The action of modular operators on the Fourier-Jacobi coefficients of modular forms, Math. USSR Sbornik, 74(1984), 237-268.
  18. Harish-Chandra, Representations of a semisimple Lie group on a Banach space. I., Trans. Amer. Math. Soc. 75 (1953), 185-243.
  19. Harish-Chandra, The characters of semisimple Lie groups, Trans. Amer. Math. Soc. 83 (1956), 98-163.
  20. S. Helgason, Differential operators on homogeneous spaces, Acta Math. 102 (1959), 239-299.
  21. S. Helgason, Groups and geometric analysis, Academic Press, New York (1984).
  22. R. Howe, Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond, The Schur lectures (1992) (Tel Aviv), Israel Math. Conf. Proceedings, vol. 8 (1995), 1-182.
  23. J. Igusa, Theta Functions, Springer-Verlag, Berlin-Heidelberg-New York (1971).
  24. T. Ikeda, On the lifting of elliptic cusp forms to Siegel cusp forms of degree 2n, Ann. Math. 154 (2001), 641-681.
  25. T. Ikeda, Pullback of the lifting of elliptic cusp forms and Miyawaki's conjecture, Duke Math. J. 131 (2006), no. 3, 469-497.
  26. M. Itoh, H. Ochiai and J.-H. Yang, Invariant differential operators on Siegel-Jacobi space, preprint (2013).
  27. C. G. J. Jacobi, Fundamenta nova theoriae functionum ellipticum, Königsberg, (1829).
  28. M. Kashiwara and M. Vergne, On the Segal-Shale-Weil Representations and Harmonic Polynomials, Invent. Math. 44 (1978), 1-47.
  29. W. Kohnen, Modular forms of half-integral weight on Γ0(4), Math. Ann. 248 (1980), 249-266.
  30. W. Kohnen, Lifting modular forms of half-integral weight to Siegel modular forms of even degree, Math. Ann. 322 (2003), 787-809.
  31. A. Korányi and J. Wolf, Generalized Cayley transformations of bounded symmetric domains, Amer. J. Math. 87 (1965), 899-939.
  32. J. Kramer, A geometrical approach to the theory of Jacobi forms, Compositio Math., 79(1991), 1-19.
  33. J. Kramer, An arithmetic theory of Jacobi forms in higher dimensions , J. reine angew. Math., 458(1995), 157-182.
  34. N. V. Kuznetsov, A new class of identities for the Fourier coefficients of modular forms, Acta Arith. (1975), 505-519.
  35. G. Lion and M. Vergne, The Weil representation, Maslov index and Theta series, Progress in Mathe- matics, 6, Birkhäuser, Boston, Basel and Stuttgart, 1980.
  36. J. Marklof, Pair correlation densities of inhomogeneous quadratic forms, Ann. of Math., 158 (2003), 419-471.
  37. H. Maass, Die Differentialgleichungen in der Theorie der Siegelschen Modulfunktionen, Math. Ann. 126 (1953), 44-68.
  38. H. Maass, Siegel modular forms and Dirichlet series, Lecture Notes in Math. 216, Springer-Verlag, Berlin-Heidelberg-New York (1971).
  39. H. Maass, Über eine Spezialschar von Modulformen zweiten Grades I, Invent. Math. 52 (1979), 95-104.
  40. H. Maass, Über eine Spezialschar von Modulformen zweiten Grades II, Invent. Math. 53 (1979), 249-253.
  41. H. Maass, Über eine Spezialschar von Modulformen zweiten Grades III, Invent. Math. 53 (1979), 255- 265.
  42. H. Minkowski, Gesammelte Abhandlungen: Chelsea, New York (1967).
  43. D. Mumford, Hirzebruch's Proportionality Theorem in the Non-Compact Case, Invent. Math. 42 (1977), 239-272.
  44. D. Mumford, Tata Lectures on Theta I, Progress in Mathematics, 28, Birkhäuser, Boston, Basel and Stuttgart, 1983.
  45. D. Mumford, M. Nori and P. Norman, Tata Lectures on Theta III, 97, Birkhäuser, Boston, Basel and Stuttgart, 1991.
  46. A. Murase, L-functions attached to Jacobi forms of degree n. Part I : The Basic Identity, J. reine angew. Math., 401 (1989), 122-156.
  47. A. Murase, L-functions attached to Jacobi forms of degree n. Part II : Functional Equation, Math. Ann., 290 (1991), 247-276.
  48. A. Murase and T. Sugano, Whittaker-Shintani Functions on the Symplectic Group of Fourier-Jacobi Type, Compositio Math., 79 (1991), 321-349.
  49. I. Piateski-Sharpiro, Automorphic Functions and the Geometry of Classical Domains, Gordan-Breach, New York (1966).
  50. A. Pitale, Jacobi Maass forms, Abh. Math. Sem. Univ. Hamburg 79 (2009), 87-111.
  51. B. Runge, Theta functions and Siegel-Jacobi functions, Acta Math., 175 (1995), 165-196.
  52. I. Satake, Fock Representations and Theta Functions, Ann. Math. Studies, 66 (1971), 393-405.
  53. I. Satake, Algebraic Structures of Symmetric Domains, Kano Memorial Lectures 4, Iwanami Shoton, Publishers and Princeton University Press (1980).
  54. G. Shimura, On modular forms of half integral weight , Ann. of Math. 97 (1973), 440-481.
  55. G. Shimura, On certain reciprocity laws for theta functions and modular forms, Acta Math. 141 (1979), 35-71.
  56. G. Shimura, Invariant differential operators on hermitian symmetric spaces, Ann. Math. 132 (1990), 237-272.
  57. C. L. Siegel, Symplectic Geometry, Amer. J. Math. 65 (1943), 1-86; Academic Press, New York and London (1964);
  58. Gesammelte Abhandlungen, no. 41, vol. II, Springer-Verlag (1966), 274-359.
  59. C. L. Siegel, Gesammelte Abhandlungen I-IV, Springer-Verlag(I-III: 1966; IV: 1979).
  60. C. L. Siegel, Topics in Complex Function Theory : Abelian Functions and Modular Functions of Several Variables, vol. III, Wiley-Interscience, 1973.
  61. Y.-S. Tai, On the Kodaira Dimension of the Moduli Space of Abelian Varieties, Invent. Math. 68 (1982), 425-439.
  62. H. Weyl, The classical groups: Their invariants and representations, Princeton Univ. Press, Princeton, New Jersey, second edition (1946).
  63. J.-H. Yang, The Siegel-Jacobi Operator, Abh. Math. Sem. Univ. Hamburg 63 (1993), 135-146.
  64. J.-H. Yang, Vanishing theorems on Jacobi forms of higher degree, J. Korean Math. Soc., 30(1)(1993), 185-198.
  65. J.-H. Yang, Remarks on Jacobi forms of higher degree, Proc. of the 1993 Workshop on Automorphic Forms and Related Topics, edited by Jin-Woo Son and Jae-Hyun Yang, the Pyungsan Institute for Mathematical Sciences, (1993), 33-58.
  66. J.-H. Yang, Singular Jacobi Forms, Trans. Amer. Math. Soc. 347 (6) (1995), 2041-2049.
  67. J.-H. Yang, Construction of vector valued modular forms from Jacobi forms, Canadian J. of Math. 47 (6) (1995), 1329-1339.
  68. J.-H. Yang, Kac-Moody algebras, the monstrous moonshine, Jacobi forms and infinite products, Proceed- ings of the 1995 Symposium on Number theory, geometry and related topics, the Pyungsan Institute for Mathematical Sciences (1996), 13-82 or arXiv:math.NT/0612474.
  69. J.-H. Yang, A geometrical theory of Jacobi forms of higher degree, Proceedings of Symposium on Hodge Theory and Algebraic Geometry ( edited by Tadao Oda ), Sendai, Japan (1996), 125-147 or Kyungpook Math. J. 40 (2) (2000), 209-237 or arXiv:math.NT/0602267.
  70. J.-H. Yang, The Method of Orbits for Real Lie Groups, Kyungpook Math. J. 42 (2) (2002), 199-272 or arXiv:math.RT/0602056.
  71. J.-H. Yang, A note on a fundamental domain for Siegel-Jacobi space, Houston Journal of Mathematics 32 (3) (2006), 701-712.
  72. J.-H. Yang, Invariant metrics and Laplacians on Siegel-Jacobi space, Journal of Number Theory 127 (2007), 83-102.
  73. J.-H. Yang, A partial Cayley transform for Siegel-Jacobi disk, J. Korean Math. Soc. 45, No. 3 (2008), 781-794.
  74. J.-H. Yang, Invariant metrics and Laplacians on Siegel-Jacobi disk, Chinese Annals of Mathematics, Vol. 31B(1), 2010, 85-100.
  75. J.-H. Yang, A Note on Maass-Jacobi Forms, Kyungpook Math. J. 43, no. 4 (2003), 547-566.
  76. J.-H. Yang, A Note on Maass-Jacobi Forms II, Kyungpook Math. J. 53, no. 1 (2013), 49-86.
  77. J.-H. Yang, Y.-H. Yong, S.-N. Huh, J.-H. Shin and G.-H. Min, Sectional Curvatures of the Siegel-Jacobi Space, Bull. Korean Math. Soc. 50 (2013), No. 3, pp. 787-799.
  78. J.-H. Yang, Invariant differential operators on the Minkowski-Euclid space, J. Korean Math. Soc. 50, No. 2 (2013), 275-306.
  79. J.-H. Yang, The Schrödinger-Weil representation and theta sums, preprint (2013).
  80. J. Yang and L. Yin, Derivation of Jacobi forms from connections, arXiv:1301.1156v1 [math.NT] 7 Jan 2013.
  81. D. Zagier, Sur la conjecture de Saito-Kurokawa (d'après H. Maass): Seminaire Delange-Pisot-Poitou, Paris, 1979-80, Progress in Mathematics 12, Birkhäuser, Boston, Basel and Stuttgart (1981), 371-394.
  82. N. A. Zharkovskaya, The Siegel operator and Hecke operators, Functional Anal. Appl. 8 (1974), 113-120.
  83. C. Ziegler, Jacobi Forms of Higher Degree, Abh. Math. Sem. Hamburg 59 (1989), 191-224. Department of Mathematics, Inha University, Incheon 402-751, Korea E-mail address: jhyang@inha.ac.kr