Abstract
Insulation Layer Planet Uranus Uranus Neptune Neptune Neptune Entry Parameters Design # 1 Design # 2 Design # 3 Design # 4 Design # 5 Hyperbolic excess velocity (km/s) 9.9 8.4 12.3 11.3 11.4 Relative entry velocity (km/s) 23.1 21.9 28.8 28.4 28.5 Entry Flight Path Angle, gamma (deg) -35.0 -30.0 -34.0 -20.0 -16.0 Max deceleration (g loads) 216.7 164.8 454.9 208.7 124.5 Stg Pressure (bar) 12.0 9.0 25.0 11.5 6.8 Total Peak Heat Flux (W/cm) 3456.
References (52)
- Kadish KM, Smith KM, Guilard R, Eds. Handbook of porphyrin science with applications to chemistry, physics, materials science, engineering, biology and medicine. Singapore: World Scientific 2010.
- Urbani M, Grätzel M, Nazeeruddin MK, Torres T. Meso- substituted porphyrins for dye-sensitized solar cells. Chem Rev 2014; 114: 12330-96. https://doi.org/10.1021/cr5001964
- Cardenas-Jirón GI, Baruah T, Zope RR. Excited electronic states of porphyrin-based assemblies using density functional theory. In: Handbook of porphyrin science. River Edge, NJ: World Scientific Publishing Co. 2016; pp. 233-89. https://doi.org/10.1142/9789813149625_0004
- Guldi DM. Fullerenes: three-dimensional electron acceptor materials. Chem Commun 2000; 321-27. https://doi.org/10.1039/a907807j
- Dennler G, Scharber MC, Brabec CJ. Polymer-fullerene bulk- heterojunction solar cells. Adv Mater 2009; 21: 1323-38. https://doi.org/10.1002/adma.200801283
- Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F. Photoinduced electron-transfer from a conducting polymer to buckminsterfullerene. Science 1992; 258: 1474-6. https://doi.org/10.1126/science.258.5087.1474
- Jung SH, Lee J-W, Kim H-J. Self-assembly of uncharged amphiphilic porphyrins and incorporation of C60 fullerenes in water. Supramol Chem 2016; 28: 634-9. https://doi.org/10.1080/10610278.2015.1092535
- Beletskaya I, Tyurin VS, Tsivadze AY, Guilard R, Stern C. Supramolecular chemistry of metalloporphyrins. Chem Rev 2009; 109: 1659-1713. https://doi.org/10.1021/cr800247a
- Drain CM, Varotto A, Radivojevic I. Self-organized porphyrinic materials. Chem Rev 2009; 109: 1630-58. https://doi.org/10.1021/cr8002483
- Guldi DM. Fullerene-porphyrin architectures; photosynthetic antenna and reaction center models. Chem Soc Rev 2002; 31: 22-36. https://doi.org/10.1039/b106962b
- Zope RR, Olguin M, Baruah T. Charge transfer excitations in cofacial fullerene-porphyrin complexes. J Chem Phys 2012; 137: 084317. https://doi.org/10.1063/1.4739272
- Stangel C, Schubert C, Kuhri S, et al. Tuning the reorganization energy of electron transfer in supramolecular ensembles--metalloporphyrin, oligophenylenevinylenes, and fullerene--and the impact on electron transfer kinetics. Nanoscale 2015; 7: 2597-608. https://doi.org/10.1039/C4NR05165C
- Garg V, Kodis G, Liddell PA, et al. Artificial photosynthetic reaction center with a coumarin-based antenna system. J Phys Chem B 2013; 117: 11299-308. https://doi.org/10.1021/jp402265e
- Ðorđević L, Marangoni T, De Leo F, et al. Fullerene- porphyrin [n]pseudorotaxanes: self-assembly, photophysics and third-order NLO response. Phys Chem Chem Phys 2016; 18: 11858-68. https://doi.org/10.1039/C5CP06055A
- Sánchez L, Sierra M, Martín N, et al. Exceptionally strong electronic communication through hydrogen bonds in porphyrin-C60 pairs. Angew Chem Int Ed 2006; 45: 4637-41. https://doi.org/10.1002/anie.200601264
- D'Souza F, Maligaspe E, Ohkubo K, Zandler ME, Subbaiyan NK, Fukuzumi S. Photosynthetic reaction center mimicry: low reorganization energy driven charge stabilization in self- assembled cofacial zinc phthalocyanine dimer-fullerene conjugate. J Am Chem Soc 2009; 131: 8787-97. https://doi.org/10.1021/ja903467w
- Grimm B, Karnas E, Brettreich M, Ohta K, Hirsch A, Guldi DM, Torres T, Sessler JL. Charge transfer in sapphyrin- fullerene hybrids employing dendritic ensembles. J Phys Chem B 2010; 114: 14134-9. https://doi.org/10.1021/jp906785f
- Megiatto JD, Schuster DI, de Miguel G, Wolfrum S, Guldi DM. Topological and conformational effects on electron transfer dynamics in porphyrin-[60]fullerene interlocked systems. Chem Mater 2012; 24: 2472-85. https://doi.org/10.1021/cm3004408
- Megiatto JD, Li K, Schuster DI, et al. Convergent synthesis and photoinduced processes in multi-chromophoric rotaxanes. J Phys Chem B 2010; 114: 14408-19. https://doi.org/10.1021/jp101154k
- Moreira L, Calbo J, Illescas BM, et al. Metal-atom impact on the self-assembly of cup-and-ball metalloporphyrin-fullerene conjugates. Angew Chem Int Ed 2015; 54: 1255-60. https://doi.org/10.1002/anie.201409487
- Calderon RMK, Valero J, Grimm B, de Mendoza J, Guldi DM. Enhancing molecular recognition in electron donor-acceptor hybrids via cooperativity. J Am Chem Soc 2014; 136: 11436- 43. https://doi.org/10.1021/ja5052236
- Fang X, Zhu Y-Z, Zheng J-Y. Clawlike tripodal porphyrin trimer: ion-controlled on-off fullerene binding. J Org Chem 2014; 79: 1184-91. https://doi.org/10.1021/jo4026176
- Garg V, Kodis G, Chachisvilis M, et al. Conformationally constrained macrocyclic diporphyrin-fullerene artificial photosynthetic reaction center. J Am Chem Soc 2011; 133: 2944-54. https://doi.org/10.1021/ja1083078
- Al-Subi AH, Niemi M, Tkachenko NV, Lemmetyinen H. Effect of anion ligation on electron transfer of double-linked zinc porphyrin-fullerene dyad. J Phys Chem A 2011; 115: 3263- 71. https://doi.org/10.1021/jp111234d
- Lemmetyinen H, Tkachenko NV, Efimov A, Niemi M. Transient states in photoinduced electron transfer reactions of porphyrin-and phthalocyanine-fullerene dyads. J Porphyrins Phthalocyanines 2009; 13: 1090-7. https://doi.org/10.1142/S108842460900139X
- D'Souza F, Chitta R, Gadde S, et al. Photosynthetic reaction center mimicry of a ″special pair″ dimer linked to electron acceptors by a supramolecular approach: self-assembled cofacial zinc porphyrin dimer complexed with fullerene[s].
- Chem-Eur J 2007; 13: 916-22. https://doi.org/10.1002/chem.200600885
- D'Souza F, Maligaspe E, Karr PA, et al. Faceto-face Pacman-type porphyrin-fullerene dyads: design, synthesis, charge-transfer interactions, and photophysical studies. Chem-Eur J 2008; 14: 674-81. https://doi.org/10.1002/chem.200700936
- Fukuzumi S, Kashiwagi Y. Photoinduced electron transfer in a supramolecular triad system composed of ferrocene-zinc porphyrin-pyridylnaphthalenediimide.
- J Porphyrins Phthalocyanines 2007; 11: 368-74. https://doi.org/10.1142/S1088424607000412
- Sarova GH, Hartnagel U, Balbinot D, Sali S, Jux N, Hirsch A, Guldi DM. Testing electron transfer within molecular associates built around anionic C[60] and C[70] dendrofullerenes and a cationic zinc porphyrin. Chem-Eur J 2008; 14: 3137-45. https://doi.org/10.1002/chem.200701462
- Mironov AF. Synthesis, properties, and potential applications of porphyrin-fullerenes. Макрогетероциклы/ Macroheterocycles 2011; 4: 186-208. https://doi.org/10.6060/mhc2011.3.08
- Buldum A, Reneker DH. Fullerene-porphyrin supramolecular nanocables. Nanotechnology 2014; 25: 235201. https://doi.org/10.1088/0957-4484/25/23/235201
- Moreira L, Calbo J, Arago J, et al. Conjugated porphyrin dimers: cooperative effects and electronic communication in supramolecular ensembles with C60. J Am Chem Soc 2016; 138: 15359-67. https://doi.org/10.1021/jacs.6b07250
- Caŕdenas-Jiroń G, Borges-Martínez M, Sikorski E, Baruah T. Excited states of light-harvesting systems based on fullerene/graphene oxide and porphyrin/smaragdyrin. J Phys Chem C 2017; 121: 4859-72. https://doi.org/10.1021/acs.jpcc.6b12452
- Saegusa Y, Ishizuka T, Kojima T, Mori S, Kawano M, Kojima T. Supramolecular interaction of fullerenes with a curved π- surface of a monomeric quadruply ring-fused porphyrin. Chem Eur J 2015; 21: 5302-6. https://doi.org/10.1002/chem.201500389
- Imahori H, Fukuzumi S. Porphyrin-and fullerene-based photovoltaic devices. Adv Funct Mater 2004; 14: 525-36. https://doi.org/10.1002/adfm.200305172
- Barbee J, Kuznetsov AE. Revealing substituent effects on the electronic structure and planarity of Ni-porphyrins. Comp Theoret Chem 2012; 981: 73-85. https://doi.org/10.1016/j.comptc.2011.11.049
- Kuznetsov AE. Metalloporphyrins with all the pyrrole nitrogens replaced with phosphorus atoms, MP[P]4 [M = Sc, Ti, Fe, Ni, Cu, Zn]. Chem Phys 2015; 447: 36-45. https://doi.org/10.1016/j.chemphys.2014.11.018
- Kuznetsov AE. How the change of the ligand from L = porphine, P 2-, to L = P4-substituted porphine, P[P]4 2-, affects the electronic properties and the M-L binding energies for the first-row transition metals M = Sc-Zn: comparative study. Chem Phys 2016; 469-470: 38-48. https://doi.org/10.1016/j.chemphys.2016.02.010
- Kuznetsov AE. Computational design of ZnP[P]4 stacks: three modes of binding. J Theor Comp Chem 2016; 15: 1650043. https://doi.org/10.1142/S0219633616500437
- Reddy BK, Gadekar SC, Anand VG. The synthesis and characterization of the meso-meso linked antiaromatic tetraoxaisophlorin dimer. Chem Commun 2016; 52: 3007-9. https://doi.org/10.1039/C5CC10370C
- Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09: ES64L-G09RevD.01 24-Apr-2013, Gaussian, Inc., Wallingford CT. 2013.
- Yanai T, Tew D, Handy N. A new hybrid exchange- correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 2004; 393: 51-7. https://doi.org/10.1016/j.cplett.2004.06.011
- Hariharan PC, Pople JA. Accuracy of AHn equilibrium geometries by single determinant molecular orbital theory. Mol Phys 1974; 27: 209-14. https://doi.org/10.1080/00268977400100171
- Gordon MS. The isomers of silacyclopropane. Chem Phys Lett 1980; 76: 163-8. https://doi.org/10.1016/0009-2614(80)80628-2
- Stangel C, Charisiadis A, Zervaki GE, et al. Case study for artificial photosynthesis: noncovalent interactions between C60-dipyridyl and zinc porphyrin dimer. J Phys Chem C 2017; 121: 4850-8. https://doi.org/10.1021/acs.jpcc.6b11863
- Rhoda HM, Kayser MP, Wang Y, et al. Tuning up an electronic structure of the subphthalocyanine derivatives toward electron-transfer process in noncovalent complexes with C60 and C70 fullerenes: experimental and theoretical studies. Inorg Chem 2016; 55: 9549-63. https://doi.org/10.1021/acs.inorgchem.6b00992
- Cancès E, Mennucci B, Tomasi J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anistropic dielectrics. J Chem Phys 1997; 107: 3032-41. https://doi.org/10.1063/1.474659
- Reed AE, Curtiss LA, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 1988; 88: 899-926. https://doi.org/10.1021/cr00088a005
- Schaftenaar G, Noordik JH. Molden: a pre-and post- processing program for molecular and electronic structures. J Comput-Aided Mol Design 2000; 14: 123-34. https://doi.org/10.1023/A:1008193805436
- Towns J, Cockerill T, Dahan M, et al. XSEDE: accelerating scientific discovery. Comp Sci Eng 2014; 16: 62-74. https://doi.org/10.1109/MCSE.2014.80