Academia.eduAcademia.edu

Outline

Cost and Latency Optimized Edge Computing Platform

2022, Electronics

https://doi.org/10.3390/ELECTRONICS11040561

Abstract

Latency-critical applications, e.g., automated and assisted driving services, can now be deployed in fog or edge computing environments, offloading energy-consuming tasks from end devices. Besides the proximity, though, the edge computing platform must provide the necessary operation techniques in order to avoid added delays by all means. In this paper, we propose an integrated edge platform that comprises orchestration methods with such objectives, in terms of handling the deployment of both functions and data. We show how the integration of the function orchestration solution with the adaptive data placement of a distributed key–value store can lead to decreased end-to-end latency even when the mobility of end devices creates a dynamic set of requirements. Along with the necessary monitoring features, the proposed edge platform is capable of serving the nomad users of novel applications with low latency requirements. We showcase this capability in several scenarios, in which we ar...

References (56)

  1. Gomes, E.; Costa, F.; De Rolt, C.; Plentz, P.; Dantas, M. A Survey from Real-Time to Near Real-Time Applications in Fog Computing Environments. Telecom 2021, 2, 489-517. doi:10.3390/telecom2040028.
  2. Szalay, M.; Nagy, M.; Géhberger, D.; Kiss, Z.; Mátray, P.; Németh, F.; Pongrácz, G.; Rétvári, G.; Toka, L. Industrial-scale stateless network functions. In Proceedings of the 2019 IEEE 12th International Conference on Cloud Computing (CLOUD), Milan, Italy, 8-13 July 2019; pp. 383-390.
  3. Google Cloud: Google Kubernetes Engine (GKE as Caas) and Google Cloud Functions (FaaS). 2021. Available online: https: //cloud.google.com/ (accessed on 30 November 2021).
  4. Microsoft Azure: Azure Kubernetes Service (AKS as CaaS) and Azure Functions (FaaS). 2021. Available online: https://azure. microsoft.com/ (accessed on 30 November 2021).
  5. Haja, D.; Turanyi, Z.R.; Toka, L. Location, Proximity, Affinity -The key factors in FaaS. Infocommun. J. 2020, 12, 14-21. doi:10.36244/ICJ.2020.4.3.
  6. Szalay, M.; Mátray, P.; Toka, L. State Management for Cloud-Native Applications. Electronics 2021, 10, 423.
  7. Pelle, I.; Czentye, J.; Doka, J.; Kern, A.; Gero, B.P.; Sonkoly, B. Operating Latency Sensitive Applications on Public Serverless Edge Cloud Platforms. IEEE Internet Things J. 2021, 8, 7954-7972. doi:10.1109/jiot.2020.3042428.
  8. Szalay, M.; Matray, P.; Toka, L. AnnaBellaDB: Key-Value Store Made Cloud Native. In Proceedings of the 2020 16th International Conference on Network and Service Management (CNSM), IEEE, Izmir, Turkey, 2-6 November 2020; pp. 1-5.
  9. Da Silva, M.D.; Tavares, H.L. Redis Essentials; Packt Publishing Ltd.: Birmingham, UK, 2015.
  10. Yang, F.; Wang, S.; Li, J.; Liu, Z.; Sun, Q. An overview of Internet of Vehicles. China Commun. 2014, 11, 1-15. doi:10.1109/CC.2014.6969789.
  11. Contreras-Castillo, J.; Zeadally, S.; Guerrero-Ibañez, J.A. Internet of Vehicles: Architecture, Protocols, and Security. IEEE Internet Things J. 2018, 5, 3701-3709. doi:10.1109/JIOT.2017.2690902.
  12. Continental AG. Continental Continues to Drive Forward the Development of Server-Based Vehicle Architectures. 2021. Available online: https://www.continental.com/en/press/press-releases/20210728-cross-domain-hpc/ (accessed on 30 November 2021).
  13. Continental AG. Continental and Amazon Web Services Create Platform for Automotive Software. 2021. Available online: https://www.continental.com/en/20210415-continental-and-amazon-web-services/ (accessed on 30 November 2021).
  14. Rahimi, M.R.; Venkatasubramanian, N.; Mehrotra, S.; Vasilakos, A.V. On Optimal and Fair Service Allocation in Mobile Cloud Computing. IEEE Trans. Cloud Comput. 2018, 6, 815-828. doi:10.1109/tcc.2015.2511729.
  15. Zakarya, M.; Gillam, L.; Ali, H.; Rahman, I.; Salah, K.; Khan, R.; Rana, O.; Buyya, R. epcAware: A Game-based, Energy, Performance and Cost Efficient Resource Management Technique for Multi-access Edge Computing. IEEE Trans. Serv. Comput. 2020, 1. doi:10.1109/tsc.2020.3005347.
  16. Chantre, H.D.; da Fonseca, N.L. Multi-objective optimization for edge device placement and reliable broadcasting in 5G NFV-based small cell networks. IEEE J. Sel. Areas Commun. 2018, 36, 2304-2317.
  17. Mouradian, C.; Kianpisheh, S.; Abu-Lebdeh, M.; Ebrahimnezhad, F.; Jahromi, N.T.; Glitho, R.H. Application component placement in NFV-based hybrid cloud/fog systems with mobile fog nodes. IEEE J. Sel. Areas Commun. 2019, 37, 1130-1143.
  18. Yang, L.; Cao, J.; Liang, G.; Han, X. Cost aware service placement and load dispatching in mobile cloud systems. IEEE Trans. Comput. 2015, 65, 1440-1452.
  19. Ceselli, A.; Premoli, M.; Secci, S. Mobile edge cloud network design optimization. IEEE/ACM Trans. Netw. 2017, 25, 1818-1831.
  20. Yang, B.; Chai, W.K.; Pavlou, G.; Katsaros, K.V. Seamless support of low latency mobile applications with nfv-enabled mobile edge-cloud. In Proceedings of the 2016 5th IEEE International Conference on Cloud Networking (Cloudnet), Pisa, Italy, 3-5 October 2016; pp. 136-141.
  21. Badri, H.; Bahreini, T.; Grosu, D.; Yang, K. Energy-aware application placement in mobile edge computing: A stochastic optimization approach. IEEE Trans. Parallel Distrib. Syst. 2019, 31, 909-922.
  22. Ochoa-Aday, L.; Cervelló-Pastor, C.; Fernández-Fernández, A.; Grosso, P. An Online Algorithm for Dynamic NFV Placement in Cloud-Based Autonomous Response Networks. Symmetry 2018, 10, 163. doi:10.3390/sym10050163.
  23. Herrera, J.G.; Botero, J.F. Resource Allocation in NFV: A Comprehensive Survey. IEEE Trans. Netw. Serv. Manag. 2016, 13, 518-532. doi:10.1109/tnsm.2016.2598420.
  24. Bhamare, D.; Jain, R.; Samaka, M.; Erbad, A. A survey on service function chaining. J. Netw. Comput. Appl. 2016, 75, 138-155. doi:10.1016/j.jnca.2016.09.001.
  25. Abdelaal, M.A.; Ebrahim, G.A.; Anis, W.R. Efficient Placement of Service Function Chains in Cloud Computing Environments. Electronics 2021, 10, 323. doi:10.3390/electronics10030323.
  26. Wu, Y.; Zhou, J. Dynamic Service Function Chaining Orchestration in a Multi-Domain: A Heuristic Approach Based on SRv6. Sensors 2021, 21, 6563. doi:10.3390/s21196563.
  27. Santos, G.L.; de Freitas Bezerra, D.; da Silva Rocha, É.; Ferreira, L.; Moreira, A.L.C.; Gonçalves, G.E.; Marquezini, M.V.; Recse, Á.; Mehta, A.; Kelner, J.; et al. Service Function Chain Placement in Distributed Scenarios: A Systematic Review. J. Netw. Syst. Manag. 2021, 30, 1-39. doi:10.1007/s10922-021-09626-4.
  28. Sonkoly, B.; Czentye, J.; Szalay, M.; Nemeth, B.; Toka, L. Survey on Placement Methods in the Edge and Beyond. IEEE Commun. Surv. Tutor. 2021, 23, 2590-2629. doi:10.1109/comst.2021.3101460.
  29. Baldini, I.; Castro, P.; Chang, K.; Cheng, P.; Fink, S.; Ishakian, V.; Mitchell, N.; Muthusamy, V.; Rabbah, R.; Slominski, A.; et al. Serverless Computing: Current Trends and Open Problems. In Research Advances in Cloud Computing; Springer: Singapore, 2017; pp. 1-20. doi:10.1007/978-981-10-5026-8_1.
  30. Kjorveziroski, V.; Filiposka, S.; Trajkovik, V. IoT Serverless Computing at the Edge: A Systematic Mapping Review. Computers 2021, 10, 130. doi:10.3390/computers10100130.
  31. Dormando. Memcached-A Distributed Memory Object Caching System. 2018. Available online: https://memcached.org/ (accessed on 28 November 2021).
  32. Lakshman, A.; Malik, P. Cassandra: A decentralized structured storage system. ACM SIGOPS Oper. Syst. Rev. 2010, 44, 35-40.
  33. Sivasubramanian, S. Amazon dynamoDB: A seamlessly scalable non-relational database service. In Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data, Scottsdale, AZ, USA, 20-24 May 2012; pp. 729-730.
  34. Wu, C.; Sreekanti, V.; Hellerstein, J.M. Autoscaling tiered cloud storage in Anna. Proc. VLDB Endow. 2019, 12, 624-638. doi:10.14778/3311880.3311881.
  35. HashiCorp. Terraform by HashiCorp. 2021. Available online: https://www.terraform.io (accessed on 28 Novermber 2021).
  36. Stackery. Stackery. 2021. Available online: https://www.stackery.io (accessed on 28 Novermber 2021).
  37. Eismann, S.; Grohmann, J.; van Eyk, E.; Herbst, N.; Kounev, S. Predicting the Costs of Serverless Workflows. In Proceedings of the ACM/SPEC International Conference on Performance Engineering (ICPE), Edmonton, AB, Canada, 20-24 April 2020; pp. 265-276.
  38. Fotouhi, M.; Chen, D.; Lloyd, W.J. Function-as-a-Service Application Service Composition: Implications for a Natural Language Processing Application. In Proceedings of the 5th International Workshop on Serverless Computing (WOSC); ACM: New York, NY, USA, 2019; pp. 49-54.
  39. Winzinger, S.; Wirtz, G. Model-Based Analysis of Serverless Applications. In Proceedings of the 11th International Workshop on Modelling in Software Engineerings (MiSE); ACM: New York, NY, USA, 2019; pp. 82-88.
  40. Kuhlenkamp, J.; Klems, M. Costradamus: A Cost-Tracing System for Cloud-Based Software Services. In Service-Oriented Computing; Springer: Berlin, Germany, 2017; pp. 657-672.
  41. Mahajan, K.; Figueiredo, D.; Misra, V.; Rubenstein, D. Optimal Pricing for Serverless Computing. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9-13 December 2019; pp. 1-6.
  42. Elgamal, T. Costless: Optimizing Cost of Serverless Computing through Function Fusion and Placement. In Proceedings of the 2018 IEEE/ACM Symposium on Edge Computing (SEC), Seattle, WA, USA, 25-27 October 2018; pp. 300-312.
  43. Das, A.; Imai, S.; Wittie, M.P.; Patterson, S. Performance Optimization for Edge-Cloud Serverless Platforms via Dynamic Task Placement. In Proceedings of the 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID), Melbourne, VIC, Australia, 11-14 May 2020.
  44. Mahmoudi, N.; Lin, C.; Khazaei, H.; Litoiu, M. Optimizing Serverless Computing: Introducing an Adaptive Function Placement Algorithm. In Proceedings of the 29th Annual International Conference on Computer Science and Software Engineering (CASCON); ACM: New York, NY, USA, 2019; pp. 203-213.
  45. Bravetti, M.; Giallorenzo, S.; Mauro, J.; Talevi, I.; Zavattaro, G. Optimal and Automated Deployment for Microservices. In Fundamental Approaches to Software Engineering; Springer: Berlin, Germany, 2019; pp. 351-368.
  46. Pelle, I.; Paolucci, F.; Sonkoly, B.; Cugini, F. Fast Edge-to-Edge Serverless Migration in 5G Programmable Packet-Optical Networks. In Optical Fiber Communication Conference (OFC) 2021; Optical Society of America: Washington, DC, USA, 2021; p. W1E.1. doi:10.1364/OFC.2021.W1E.1.
  47. Amazon Web Services Inc. AWS Lambda: Serverless Computing. 2021. Available online: https://aws.amazon.com/lambda/ (accessed on 28 November 2021).
  48. Amazon Web Services Inc. Intelligence at the IoT Edge-AWS IoT Greengrass. 2021. Available online: https://aws.amazon.com/ greengrass/ (accessed on 28 November 2021).
  49. Pelle, I.; Czentye, J.; Dóka, J.; Sonkoly, B. Towards Latency Sensitive Cloud Native Applications: A Performance Study on AWS. In Proceedings of the 2019 IEEE 12th International Conference on Cloud Computing (CLOUD), Milan, Italy, 8-13 July 2019; pp. 272-280. doi:10.1109/CLOUD.2019.00054.
  50. Czentye, J.; Pelle, I.; Kern, A.; Gero, B.P.; Toka, L.; Sonkoly, B. Optimizing Latency Sensitive Applications for Amazon's Public Cloud Platform. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9-13 December 2019; pp. 1-7.
  51. Baldini, I.; Cheng, P.; Fink, S.J.; Mitchell, N.; Muthusamy, V.; Rabbah, R.; Suter, P.; Tardieu, O. The serverless trilemma: Function composition for serverless computing. In Proceedings of the 2017 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software; ACM: New York, NY, USA, 2017. doi:10.1145/3133850.3133855.
  52. Skarin, P.; Tarneberg, W.; Arzen, K.E.; Kihl, M. Control-over-the-cloud: A performance study for cloud-native, critical control systems. In Proceedings of the 2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC), Leicester, UK, 7-10 December 2020. doi:10.1109/ucc48980.2020.00025.
  53. Szalay, M.; Mátray, P.; Toka, L. Minimizing state access delay for cloud-native network functions. In Proceedings of the 2019 IEEE 8th International Conference on Cloud Networking (CloudNet), Coimbra, Portugal, 4-6 November 2019; pp. 1-6.
  54. Yi, S.; Kim, T.W.; Kim, J.C.; Dutt, N. Energy-Efficient adaptive system reconfiguration for dynamic deadlines in autonomous driving. In Proceedings of the 2021 IEEE 24th International Symposium on Real-Time Distributed Computing (ISORC), Daegu, Korea, 1-3 June 2021; pp. 96-104.
  55. Pelle, I.; Czentye, J.; Dóka, J.; Sonkoly, B. Dynamic Latency Control of Serverless Applications Operated on AWS Lambda and Greengrass. In Proceedings of the SIGCOMM '20 Poster and Demo Sessions; Association for Computing Machinery; SIGCOMM '20; ACM: New York, NY, USA, 2020; pp. 33-34. doi:10.1145/3405837.3411381.
  56. Wurst, F.; Dasari, D.; Hamann, A.; Ziegenbein, D.; Sanudo, I.; Capodieci, N.; Bertogna, M.; Burgio, P. System performance modelling of heterogeneous hw platforms: An automated driving case study. In Proceedings of the 2019 22nd Euromicro Conference on Digital System Design (DSD), Kallithea, Greece, 28-30 August 2019; pp. 365-372.