Academia.eduAcademia.edu

Outline

Marginal Stability in Structural, Spin, and Electron Glasses

2015, Annual Review of Condensed Matter Physics

https://doi.org/10.1146/ANNUREV-CONMATPHYS-031214-014614

Abstract

We revisit the concept of marginal stability in glasses and determine its range of applicability in the context of an avalanche-type response to slow external driving. We argue that there is an intimate connection between a pseudogap in the distribution of local fields and crackling in systems with long-range interactions. We classify glassy systems according to the presence or absence of marginal stability, providing a unifying perspective on the phenomenology of systems as diverse as spin and electron glasses, hard spheres, pinned elastic interfaces, and soft amorphous solids undergoing plastic deformation.

References (103)

  1. M. Pollak, Discuss. Faraday Soc. 50, 13 (1970).
  2. A. L. Efros and B. I. Shklovskii, J. Phys. C 8, L49 (1975). A. L. Efros, J. Phys. C 9, 2021 (1976).
  3. J. Davies, P.A. Lee, and T. M. Rice, Phys. Rev. Lett. 49, 758 (1982).
  4. M. Pollak, M. Ortuno, and A. Frydman, The Electron Glass, Cambridge University Press, Cambridge, 2013.
  5. D. Monroe, A. C. Gossard, J. H. English, B. Gold- ing, W. H. Haemmerle, and M. A. Kastner, Phys. Rev. Lett. 59, 1148 (1987).
  6. M. Ben-Chorin, Z. Ovadyahu, and M. Pollak, Phys. Rev. B 48, 15025 (1993). S. Bogdanovich and D. Popović, Phys. Rev. Lett. 88, 236401 (2002). T. Grenet, Eur. Phys. J. B 32, 275 (2003). T. Havdala, A. Eisen- bach, and A. Frydman, EPL 98, 67006 (2012).
  7. J. G. Massey and M. Lee, Phys. Rev. Lett. 75, 4266 (1995).
  8. S. Pankov, V. Dobrosavljević, Phys. Rev. Lett. 94, 046402 (2005).
  9. M. Müller and L. Ioffe, Phys. Rev. Lett. 93, 256403 (2004).
  10. M. Müller and S. Pankov, Phys. Rev. B 75, 144201 (2007).
  11. M. Goethe and M. Palassini, Phys. Rev. Lett. 103, 045702 (2009).
  12. M. Palassini and M. Goethe, J. Phys.: Conference Series 376, 012009 (2012).
  13. D. Thouless, P. W. Anderson, and R. Palmer, Phi- los. Mag. 35, 593 (1977).
  14. F. Pázmándi, G. Zaránd, and G. T. Zimányi, Phys. Rev. Lett. 83, 1034 (1999).
  15. P. R. Eastham, R. A. Blythe, A. J. Bray, and M. A. Moore, Phys. Rev. B 74, 020406(R) (2006).
  16. H. Horner, Eur. Phys. J. B 60, 413 (2007).
  17. P. Le Doussal, M. Müller, and K. Wiese, EPL 91, 57004 (2010).
  18. P. Le Doussal, M. Müller, and K. Wiese, Phys. Rev. B 85, 214402 (2012).
  19. A. Sharma, A. Andreanov and M. Müller, arXiv:1406.6845 (2014).
  20. M. Wyart, Phys. Rev. Lett. 109, 125502 (2012).
  21. E. Lerner, G. During, and M. Wyart, Soft Matter 9, 8252 (2013).
  22. E. DeGiuli, A. Laversanne-Finot, G. Düring, E. Lerner, and M. Wyart, arXiv:1401.6563 (2014).
  23. Y. Kallus, É. Marcotte, and S. Torquato, Phys. Rev. E 88, 062151 (2013).
  24. Y. Kallus and S. Torquato, arXiv:1405.2087 (2014).
  25. P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, and F. Zamponi, Nat. Commun. 5 (2014).
  26. G. Parisi, J. Phys. A 13, 1101 (1980);
  27. J. Phys. A 13, L115 (1980). C. De Dominicis and I. Kondor, Phys. Rev. B 27, 606 (1983).
  28. M. Wyart, Annales de Phys. 30 (3), 1 (2005).
  29. C. Brito and M. Wyart, EPL (Europhysics Letters) 76, 149 (2006).
  30. C. Brito and M. Wyart, The Journal of Chemical Physics 131, 024504.
  31. E. DeGiuli, E. Lerner, C. Brito, and M. Wyart, arXiv:1402.3834 (2014).
  32. A. Marruzzo, S. Köhler, A. Fratalocchi, G. Ruocco, and W. Schirmacher, Eur. Phys. J. ST 216, 83 (2013).
  33. L. Cugliandolo and J. Kurchan, Phys. Rev. Lett. 71, 173 (1993);
  34. J. Phys. A: Math. Gen. 27, 5749 (1994).
  35. J. Phys. A: Math. Gen. 29, 1929 (1996).
  36. J. Sethna, K. Dahmen, and C. Myers, Nature 410, 242 (2001).
  37. P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987).
  38. D. S. Fisher, Phys. Rep. 301, 113 (1998).
  39. D. Sherrington and S Kirkpatrick, Phys. Rev. Lett. 35, 1792 (1975). S. Kirkpatrick and D. Sherrington, Phys. Rev. B 17, 4384 (1978).
  40. V. Dobrosavljević, D. Tanasković, and A.A. Pastor, Phys. Rev. Lett. 90, 016402 (2003).
  41. J. C. Andresen, Z. Zhu, R. S. Andrist, H. G. Katzgraber, V. Dobrosavljević, and G. T. Zimányi, Phys. Rev. Lett. 111, 097203 (2013).
  42. J. S. Urbach, R. C. Madison and J. T. Markert, Phys. Rev. Lett. 75, 276 (1995). D.-H. Kim, S.-B. Choe, and S.-C. Shin, Phys. Rev. Lett. 90, 087203 (2003).
  43. J. Sethna et al., Phys. Rev. Lett. 70, 3347 (1993). O. Perkovic, K. Dahmen, and J. Sethna, Phys. Rev. Lett. 75, 4528 (1995).
  44. E. Vives, J. Goicoechea, J. Ortín, and A. Planes, Phys. Rev. E 52, R5, (1995).
  45. S. Boettcher, H. G. Katzgraber, D. Sherrington, J. Phys. A: Math. Theor. 41, 324007 (2008).
  46. R. G. Palmer and C. M. Pond, J. Phys. F: Metal Phys. 9, 1451 (1979).
  47. P. W. Anderson, in Ill-Condensed Matter, edited by R. Balian, R. Maynard, and G. Toulouse (North-Holland, Am-sterdam), p. 159 (1979).
  48. Y. Le, M. Müller, and M. Wyart, in preparation.
  49. H. Sommers and W. Dupont, J. Phys. C: Solid State Phys. 17, 5785 (1984).
  50. S. Pankov, Phys. Rev. Lett. 96, 197204 (2006).
  51. C. Monthus and T. Garel, J. Stat. Mech. P07010 (2011).
  52. M. Palassini, unpublished.
  53. J. Mitchell, A. Gangopadhyay, V. Galitski, and M. Müller, Phys. Rev. B 85, 195141 (2012).
  54. T. Chen, B. Skinner, B. I. Shklovskii, Phys. Rev. B 86, 045135 (2012).
  55. A. L. Efros, B. Skinner, B. I. Shklovskii, Phys. Rev. B 84, 064204 (2011).
  56. A. Möbius, M. Richter, and B. Drittler, Phys. Rev. B 45, 11568 (1992).
  57. J. C. Andresen, Y. Pramudya, H. G. Katzgraber, C. K. Thomas, G. T. Zimányi, and V. Dobrosavljević, arXiv:1309.2887 (2013).
  58. U. C. Täuber, H. Dai, D. R. Nelson, C. M. Lieber, Phys. Rev. Lett. 74, 5132 (1995).
  59. A. I. Larkin and D.E. Khmel'nitskii, Zh. Eksp. Teor. Fiz 83, 1140 (1982) [Sov. Phys. JETP 56, 647 (1982)].
  60. S. D. Baranovskii, B. Shklovskii, and A. L. Efros, Zh. Eksp. Teor. Fiz 78, 395 (1980). [Sov. Phys. JETP 51, 688 (1980).] C. C. Yu and A. J. Leggett, Comm. Cond. Matter Physics 14, 231 (1989). J. J. Alonso and J. F. Fernández, Phys. Rev. B 81, 064408 (2010).
  61. P. Pusey and W. Van Megen, Phys. Rev. Lett. 59, 2083 (1987).
  62. T. Mason and D. Weitz, Phys. Rev. Lett. 75, 2770 (1995).
  63. G. Parisi and F. Zamponi, Rev. Mod. Phys. 82, 789 (2010).
  64. A. J. Liu, S. R. Nagel, W. van Saarloos, and M. Wyart, The jamming scenario: an introduction and outlook (Oxford University Press, Oxford, 2010).
  65. M. van Hecke, J. Phys.: Condens. Matter 22, 033101 (2010).
  66. S. Alexander, Phys. Rep. 296, 65 (1998).
  67. C. S. O'Hern, L. E. Silbert, A. J. Liu, and S. R. Nagel, Phys. Rev. E 68, 011306 (2003).
  68. E. Lerner, E. DeGiuli, G. Düring, and M. Wyart, arXiv:1312.2146 (2013).
  69. J. Maxwell, Philos. Mag. 27, 294 (1864).
  70. A. V. Tkachenko and T. A. Witten, Phys. Rev. E 60, 687 (1999).
  71. C. F. Moukarzel, Phys. Rev. Lett. 81, 1634 (1998).
  72. A. Donev, S. Torquato, and F. H. Stillinger, Phys. Rev. E 71, 011105 (2005).
  73. L. E. Silbert, A. J. Liu, and S. R. Nagel, Phys. Rev. E 73, 041304 (2006).
  74. P. Charbonneau, E. I. Corwin, G. Parisi, and F. Zam- poni, Phys. Rev. Lett. 109, 205501 (2012).
  75. J. H. Snoeijer, T. J. H. Vlugt, M. van Hecke, and W. van Saarloos, Phys. Rev. Lett. 92, 054302 (2004).
  76. C. H. Liu, S. R. Nagel, D. A. Schecter, S. N. Copper- smith, S. Majumdar, O. Narayan, and T. A. Witten, Science 269, 513 (1995).
  77. E. Lerner, G. Düring, and M. Wyart, EPL 99, 58003 (2012).
  78. M. Otto, J.-P. Bouchaud, P. Claudin, and J. E. Socolar, Phys. Rev. E 67, 031302 (2003).
  79. J. P. Bouchaud, P. Claudin, D. Levine, and M. Otto, Eur. Phys. J. E 4, 451 (2001).
  80. G. Combe and J.-N. Roux, Phys. Rev. Lett. 85, 3628 (2000).
  81. P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, and F. Zamponi, arXiv:1310.2549 (2013).
  82. G. Parisi, Fractals 11, 161 (2003).
  83. A. Amir, private communication.
  84. M. Amini, V. Kravtsov, and M. Müller, New J. Phys. 16, 015022 (2014).
  85. M. Baity Jesy , M. Müller, and M. Wyart, in prepara- tion.
  86. E. Lerner, G. Düring, and M. Wyart, Computer Physics Communications 184, 628 (2013).
  87. E. Lerner, G. During, E. DeGiuli and M.Wyart, in preparation.
  88. M. Kardar, Phys. Rep. 301, 85 (1998).
  89. J. Lin, A. Saade, E. Lerner, A. Rosso, and M. Wyart, EPL 105, 26003 (2014).
  90. O. Narayan and A. A. Middleton, Phys. Rev. B 49, 244 (1994).
  91. P. Le Doussal, A. A. Middleton, K. J. Wiese, Phys. Rev. E 79, 050101 (R) (2009). P. Le Doussal, K. J. Wiese, Phys. Rev. E 79, 051106 (2009). P. Le Doussal, K. J. Wiese, Phys. Rev. E 85, 061102 (2012).
  92. A. Argon, Acta Metallurgica 27, 47 (1979).
  93. M. L. Falk and J. S. Langer, Phys. Rev. E 57, 7192 (1998).
  94. P. Hébraud and F. Lequeux, Phys. Rev. Lett. 81, 2934 (1998).
  95. G. Picard, A. Ajdari, F. Lequeux, and L. Bocquet, Eur. Phys. J. E 15, 371 (2004).
  96. A. Nicolas, J. Rottler, and J.-L. Barrat, arXiv:1403.0421 (2014).
  97. J. Lin, E. Lerner, A. Rosso, and M. Wyart, arXiv:1403.6735 (2014).
  98. S. Karmakar, E. Lerner, and I. Procaccia, Phys. Rev. E 82, 055103 (2010).
  99. K. M. Salerno, C. E. Maloney, and M. O. Robbins, Phys. Rev. Lett. 109, 105703 (2012).
  100. K. M. Salerno and M. O. Robbins, Phys. Rev. E 88, 062206 (2013).
  101. C. Maloney and A. Lemaitre, Phys. Rev. Lett. 93, 016001 (2004).
  102. P. D. Ispánovity, L. Laurson, M. Zaiser, I. Groma, S. Zapperi, and M. J. Alava, arXiv:1307.3377 (2013).
  103. Note that this average can depend on the instantaneous number of unstable spins, or other variables. E is aver- aged over these variables.