Academia.eduAcademia.edu

Outline

Lattice-ordered triangular matrix algebras

2009, Journal of Algebra

https://doi.org/10.1016/J.JALGEBRA.2009.02.028

Abstract

In this article we give some necessary and sufficient conditions for a lattice-ordered semigroup algebra to be isomorphic to a latticeordered triangular matrix algebra.

References (7)

  1. A. Bigard, K. Keimel, S. Wolfenstein, Groups et Anneaux Réticulés, Lecture Notes in Math., vol. 608, Springer-Verlag, Berlin, 1977.
  2. G. Birkhoff, Lattice Theory, third ed., Amer. Math. Soc. Colloq. Publ., vol. 25, Amer. Math. Soc., Providence, 1973.
  3. G. Birkhoff, R.S. Pierce, Lattice-ordered rings, An. Acad. Brasil. Cienc. 28 (1956) 41-69.
  4. W. Bradley, J. Ma, Lattice-ordered 2 × 2 triangular matrix algebras, Linear Algebra Appl. 404 (2005) 262-274.
  5. J.M. Howie, Fundamentals of Semigroup Theory, Oxford University Press, 1995.
  6. J. Ma, S. Steinberg, Construction of lattice orders on the semigroup ring of a positive rooted monoid, J. Algebra 260 (2003) 592-616.
  7. S. Steinberg, Archimedean, semiperfect and π -regular lattice-ordered algebras with polynomial constraints are f -algebras, Proc. Amer. Math. Soc. 89 (1983) 205-210.