Academia.eduAcademia.edu

Outline

New characterizations of vector fields on Weil bundles

2015

Abstract

Let M be a paracompact smooth manifold, A a Weil algebra and M A the associated Weil bundle. In this paper, we give another definition and characterization of vector field on M A .

References (13)

  1. B.G.R. Bossoto and E. Okassa, A-Poisson structures on Weil bundles, Int. J. Contemp. Math. Sciences, 7(16), (2012), 785-803.
  2. B.G.R. Bossoto and E. Okassa, Champs de vecteurs et formes différentielles sur une variété des points proches, Archivum mathematicum (BRNO), 44, (2008), 159-171.
  3. C. Ehresmann, Les prolongements d'un espace fibré différentiable, C.R.Acad.Sci. Paris, 240, (1955), 1755-1757.
  4. S. Helgason, Differential Geometry and symmetric spaces, New York, Aca- demic Press, 1962.
  5. I. Kolar, P.W. Michor and J. Slovak, Natural Operations in Differential Geometry, Springer Verlag, 1993.
  6. J.L. Koszul, S. Ramanan, Lectures On Fibre Bundles and Differential Geometry, Tata Institute of Fundamental Research, Bombay, 1960.
  7. A. Morimoto, Prolongation of connections to bundles of infinitely near points, J. Diff. Geom, 11, (1976), 479-498.
  8. E. Okassa, Relèvements de structures symplectiques et pseudo- riemanniennes à des variétés de points proches, Nagoya Math. J., 115, (1989), 63-71.
  9. E. Okassa, Prolongement des champs de vecteurs à des variétés des points prohes, Ann. Fac. Sci. Toulouse Math., VIII(3), (1986-1987), 346-366.
  10. A.P. Shirokov, A note on structures in tangent bundles, Itogi Nauki Tekh. Ser. Probl. Geom. Tr.Geom. Sem., 5, (1974), 311-318.
  11. A.P. Shirokov, The geometry of tangent bundles and spaces over algebras, Itogi Nauki Tekh. Ser. Probl. Geom. Tr. Geom. Sem., 12, (1981), 61-95.
  12. V.V. Shurygin, Manifolds over algebras and their application in the ge- ometry of jet bundles, Usp. Mat. Nauk, 48(2), (290), (1993), 75-106.
  13. A. Weil, Théorie des points proches sur les vari étés différentiables, Colloq. Géom. Diff. Strasbourg, (1953), 111-117.