New characterizations of vector fields on Weil bundles
2015
Abstract
Let M be a paracompact smooth manifold, A a Weil algebra and M A the associated Weil bundle. In this paper, we give another definition and characterization of vector field on M A .
References (13)
- B.G.R. Bossoto and E. Okassa, A-Poisson structures on Weil bundles, Int. J. Contemp. Math. Sciences, 7(16), (2012), 785-803.
- B.G.R. Bossoto and E. Okassa, Champs de vecteurs et formes différentielles sur une variété des points proches, Archivum mathematicum (BRNO), 44, (2008), 159-171.
- C. Ehresmann, Les prolongements d'un espace fibré différentiable, C.R.Acad.Sci. Paris, 240, (1955), 1755-1757.
- S. Helgason, Differential Geometry and symmetric spaces, New York, Aca- demic Press, 1962.
- I. Kolar, P.W. Michor and J. Slovak, Natural Operations in Differential Geometry, Springer Verlag, 1993.
- J.L. Koszul, S. Ramanan, Lectures On Fibre Bundles and Differential Geometry, Tata Institute of Fundamental Research, Bombay, 1960.
- A. Morimoto, Prolongation of connections to bundles of infinitely near points, J. Diff. Geom, 11, (1976), 479-498.
- E. Okassa, Relèvements de structures symplectiques et pseudo- riemanniennes à des variétés de points proches, Nagoya Math. J., 115, (1989), 63-71.
- E. Okassa, Prolongement des champs de vecteurs à des variétés des points prohes, Ann. Fac. Sci. Toulouse Math., VIII(3), (1986-1987), 346-366.
- A.P. Shirokov, A note on structures in tangent bundles, Itogi Nauki Tekh. Ser. Probl. Geom. Tr.Geom. Sem., 5, (1974), 311-318.
- A.P. Shirokov, The geometry of tangent bundles and spaces over algebras, Itogi Nauki Tekh. Ser. Probl. Geom. Tr. Geom. Sem., 12, (1981), 61-95.
- V.V. Shurygin, Manifolds over algebras and their application in the ge- ometry of jet bundles, Usp. Mat. Nauk, 48(2), (290), (1993), 75-106.
- A. Weil, Théorie des points proches sur les vari étés différentiables, Colloq. Géom. Diff. Strasbourg, (1953), 111-117.