Academia.eduAcademia.edu

Outline

Localization of particles in quantum field theory

2010

Abstract

We put forward an interpretation of scalar quantum field theory as relativistic quantum mechanics by curing well known problems related to locality. A probabilistic interpretation of quantum field theory similar to quantum mechanics is difficult if particle localization is defined using the Newton-Wigner position operator as it is non-local and non-covariant. An alternative bilinear covariant position operator is discussed which

References (67)

  1. T. D. Newton and E. P. Wigner, "Localized States For Elementary Systems," Rev. Mod. Phys. 21 (1949) 400.
  2. J.F. Koksma and W. Westra, "A causal alternative to Feynman's propagator,"
  3. W. Greiner, J. Reinhardt, "Field quantization," Berlin, Germany: Springer (1996) 440 p.
  4. N. D. Birrell, P. C. W. Davies, "Quantum Fields In Curved Space," Cambridge, Uk: Univ. Pr. ( 1982) 340p.
  5. C. Itzykson and J. B. Zuber, 'Quantum Field Theory," New York, Usa: Mcgraw-hill (1980) 705 P.(International Series In Pure and Applied Physics)
  6. J. J. Halliwell and M. E. Ortiz, "Sum over histories origin of the composition laws of relativistic quantum mechanics," Phys. Rev. D 48 (1993) 748 [arXiv:gr-qc/9211004].
  7. R. P. Woodard, "Enforcing The Wheeler-de Witt Constraint The Easy Way," Class. Quant. Grav. 10 (1993) 483-496.
  8. M. Henneaux and C. Teitelboim, "Relativistic Quantum Mechanics Of Supersymmetric Particles," Annals Phys. 143 (1982) 127.
  9. J. Ambjorn, R. Loll, "Nonperturbative Lorentzian quantum gravity, causality and topology change," Nucl. Phys. B536 (1998) 407-434. [hep-th/9805108].
  10. J. Ambjorn, A. Gorlich, S. Jordan et al., "CDT meets Horava-Lifshitz gravity," Phys. Lett. B690 (2010) 413-419. [arXiv:1002.3298 [hep-th]]
  11. J. Ambjorn, A. Gorlich, J. Jurkiewicz et al., "Geometry of the quantum universe," Phys. Lett. B690 (2010) 420-426. [arXiv:1001.4581 [hep-th]]
  12. J. Ambjorn, R. Loll, W. Westra and S. Zohren, "Stochastic quantization and the role of time in quantum gravity," Phys. Lett. B680 (2009) 359-364. [arXiv:0908.4224 [hep-th]].
  13. J. Ambjorn, R. Loll, W. Westra and S. Zohren, "Summing over all Topologies in CDT String Field Theory," Phys. Lett. B678 (2009) 227-232. [arXiv:0905.2108 [hep-th]].
  14. H. Halvorson and R. Clifton, "No place for particles in relativistic quantum theories?," Phil. Sci. 69 (2002) 1 [arXiv:quant-ph/0103041].
  15. A. Peres, D. R. Terno, "Quantum information and relativity theory," Rev. Mod. Phys. 76 (2004) 93. [quant-ph/0212023].
  16. R. Haag, "Local quantum physics: Fields, particles, algebras," Berlin, Germany: Springer (1992) 356 p. (Texts and monographs in physics).
  17. J. B. Hartle, "Space-time quantum mechanics and the quantum mechanics of space-time," [gr-qc/9304006]
  18. D. Marolf and C. Rovelli, "Relativistic quantum measurement," Phys. Rev. D 66 (2002) 023510 [arXiv:gr-qc/0203056].
  19. G. Kaiser, "Quantum physics, relativity and complex space-time: Towards a new synthesis," Amsterdam, Netherlands: North-Holland (1990) 359 p. (North-Holland mathematics studies, 163) [arXiv:0910.0352 [math-ph]].
  20. G. C. Hegerfeldt, "Instantaneous spreading and Einstein causality in quantum theory, Annalen Phys. 7 (1998) 716 [arXiv:quant-ph/9809030].
  21. S. N. M. Ruijsenaars, "On Newton-wigner Localization And Superluminal Propagation Speeds," Annals Phys. 137 (1981) 33.
  22. G. C. Hegerfeldt, "Remark On Causality And Particle Localization," Phys. Rev. D 10 (1974) 3320.
  23. J. Berges, "Introduction to nonequilibrium quantum field theory," AIP Conf. Proc. 739 (2005) 3 [arXiv:hep-ph/0409233].
  24. E. Calzetta, B. L. Hu, "Closed Time Path Functional Formalism in Curved Space-Time: Application to Cosmological Back Reaction Problems," Phys. Rev. D35 (1987) 495.
  25. R. D. Jordan, "Effective Field Equations for Expectation Values," Phys. Rev. D33 (1986) 444-454.
  26. K. -c. Chou, Z. -b. Su, B. -l. Hao et al., "Equilibrium and Nonequilibrium Formalisms Made Unified," Phys. Rept. 118 (1985) 1
  27. S. Weinberg, "Quantum contributions to cosmological correlations," Phys. Rev. D 72 (2005) 043514 [arXiv:hep-th/0506236].
  28. S. Park and R. P. Woodard, "Solving the Effective Field Equations for the Newtonian Potential," [arXiv:1007.2662 [gr-qc]].
  29. M. Soussa, "Causal field equations and real eigenvalues from a non-local Lagrangian," arXiv:hep-th/0309150.
  30. J. F. Koksma, T. Prokopec and G. I. Rigopoulos, "The Scalar Field Kernel in Cosmological Spaces," Class. Quant. Grav. 25 (2008) 125009 [arXiv:0712.3685 [gr-qc]].
  31. M. Musso, "A new diagrammatic representation for correlation functions in the in-in formalism," arXiv:hep-th/0611258.
  32. M. van der Meulen, J. Smit, "Classical approximation to quantum cosmological correlations," JCAP 0711 (2007) 023. [arXiv:0707.0842 [hep-th]].
  33. S. B. Giddings and M. S. Sloth, "Cosmological diagrammatic rules," JCAP 1007 (2010) 015 [arXiv:1005.3287 [hep-th]].
  34. T. Prokopec, O. Tornkvist, R. P. Woodard, "One loop vacuum polarization in a locally de Sitter background," Annals Phys. 303 (2003) 251-274. [gr-qc/0205130].
  35. T. Prokopec, O. Tornkvist, R. P. Woodard, "Photon mass from inflation," Phys. Rev. Lett. 89 (2002) 101301. [astro-ph/0205331].
  36. T. Prokopec, R. P. Woodard, "Production of massless fermions during inflation," JHEP 0310 (2003) 059. [astro-ph/0309593].
  37. J. F. Koksma, T. Prokopec, M. G. Schmidt, Decoherence in an Interacting Quantum Field Theory: The Vacuum Case, Phys. Rev. D81 (2010) 065030. [arXiv:0910.5733 [hep-th]].
  38. A. Mostafazadeh, "A Physical Realization Of The Generalized Pt-Symmetries, C-Symmetries, And Cpt-Symmetries And The Position Operator For Klein-Gordon Fields," Int. J. Mod. Phys. A 21 (2006) 2553.
  39. E. Recami, V. S. Olkhovsky and S. P. Maydanyuk, "On Non-Self-Adjoint Operators For Observables In Quantum Mechanics And Quantum Field Theory," Int. J. Mod. Phys. A 25 (2010) 1785.
  40. H. Sneyder, "Quantized spacetime," Phys. Rev. 71 38 (1947).
  41. M. V. Battisti and S. Meljanac, "Scalar Field Theory on Non-commutative Snyder Space-Time," Phys. Rev. D 82 (2010) 024028 [arXiv:1003.2108 [hep-th]].
  42. V. Elias and T. G. Steele, "Massless scalar field propagator in a quantized space-time," Int. J. Mod. Phys. E 16 (2007) 51 [arXiv:hep-th/0603117].
  43. M. Toller, "Localization of Events in Space-Time," Phys. Rev. A 59 (1999) 960 [arXiv:quant-ph/9805030].
  44. W. Pauli, "Handbuch der Physik," Vol. 5, Part. 1 : Prinzipen der Quantentheorie I, 1958.
  45. M. H. L. Pryce, "The Mass center in the restricted theory of relativity and its connection with the quantum theory of elementary particles," Proc. Roy. Soc. Lond. A195 (1948) 62-81
  46. M. T. Jaekel and S. Reynaud, "Space-Time Localization with Quantum Fields," Phys. Lett. A 220 (1996) 10.
  47. M. T. Jaekel and S. Reynaud, "Conformal symmetry and quantum relativity," Found. Phys. 28 (1998) 439-456. [quant-ph/9706036]
  48. M. H. Al-Hashimi and U. J. Wiese "Minimal position-velocity uncertainty wave packets in relativistic and non-relativistic quantum mechanics," Annals of Physics 324 (2009) 2599-2621.
  49. M. Born, "Zur Quantenmechanik der Stoßvorgänge," Zeitschrift für Physik A Hadrons and Nuclei 37 12 (1926) 863
  50. M. Born "The statistical interpretation of quantum mechanics," Nobelprize.org (2010) http://nobelprize.org/nobel prizes/physics/laureates/1954/born-lecture.html
  51. I. Bialynicki-Birula, "Photon wave function," In *Wolf, E. (ed.): Progress in optics, vol. 36* 245-294
  52. L. H. Ryder, "Quantum Field Theory," Cambridge, Uk: Univ. Pr. 2nd ed. (1996) 487 p.
  53. B. De Wit and J. Smith, "Field Theory In Particle Physics. Vol. 1," Amsterdam, Netherlands: North-holland (1986) 490 p.
  54. L. S. Brown, "Quantum Field Theory, Cambridge, UK: Univ. Pr. (1992) 542 p.
  55. M. E. Peskin, D. V. Schroeder, "An Introduction to quantum field theory," Reading, USA: Addison-Wesley (1995) 842 p.
  56. C. G. Bollini and M. C. Rocca, "Wheeler propagator," Int. J. Theor. Phys. 37 (1998) 2877 [arXiv:hep-th/9807010].
  57. J. A. Wheeler and R. P. Feynman, "Interaction with the absorber as the mechanism of radiation," Rev. Mod. Phys. 17 (1945) 157.
  58. T. Damour, P. Jaranowski and G. Schaefer, "Dimensional regularization of the gravitational interaction of point masses," Phys. Lett. B 513 (2001) 147 [arXiv:gr-qc/0105038].
  59. T. Damour and M. Lilley, "String theory, gravity and experiment," [arXiv:0802.4169 [hep-th]].
  60. P. A. M. Dirac, "The Physical Interpretation of Quantum Mechanics," Proc. Roy. Soc. A 180 1 (1942).
  61. W. Pauli, "On Dirac's New Method of Field Quantization," Rev. Mod. Phys. 190 1 (1942).
  62. A. D. Linde, "The Universe Multiplication And The Cosmological Constant Problem," Phys. Lett. B 200 (1988) 272.
  63. D. E. Kaplan and R. Sundrum, "A symmetry for the cosmological constant," JHEP 0607 (2006) 042 [arXiv:hep-th/0505265].
  64. J. W. Moffat, "Charge conjugation invariance of the vacuum and the cosmological constant problem," Phys. Lett. B 627 (2005) 9 [arXiv:hep-th/0507020].
  65. P. Morgan, "Equivalence of the Klein-Gordon random field and the complex Klein-Gordon quantum field," Europhys. Lett. 87 (2009) 31002 [arXiv:0905.1263 [quant-ph]].
  66. F. Kleefeld, "On some meaningful inner product for real Klein-Gordon fields with positive semi-definite norm," Czech. J. Phys. 56 (2006) 999 [arXiv:quant-ph/0606070].
  67. C. M. Bender, D. C. Brody and H. F. Jones, "Complex Extension of Quantum Mechanics," eConf C0306234 (2003) 617 [Phys. Rev. Lett. 89 (2002 ERRAT,92,119902.2004) 270401] [arXiv:quant-ph/0208076].