Academia.eduAcademia.edu

Outline

Normalized Weighting Schemes for Image Interpolation Algorithms

2023, Applied Sciences

https://doi.org/10.3390/APP13031741

Abstract

Image interpolation algorithms pervade many modern image processing and analysis applications. However, when their weighting schemes inefficiently generate very unrealistic estimates, they may negatively affect the performance of the end-user applications. Therefore, in this work, the author introduced four weighting schemes based on some geometric shapes for digital image interpolation operations. Moreover, the quantity used to express the extent of each shape’s weight was the normalized area, especially when the sums of areas exceeded a unit square size. The introduced four weighting schemes are based on the minimum side-based diameter (MD) of a regular tetragon, hypotenuse-based radius (HR), the virtual pixel length-based height for the area of the triangle (AT), and the virtual pixel length for hypotenuse-based radius for the area of the circle (AC). At the smaller scaling ratio, the image interpolation algorithm based on the HR scheme scored the highest at 66.6% among non-traditional image interpolation algorithms presented. However, at the higher scaling ratio, the AC scheme-based image interpolation algorithm scored the highest at 66.6% among non-traditional algorithms presented, and, here, its image interpolation quality was generally superior or comparable to the quality of images interpolated by both non-traditional and traditional algorithms.

References (63)

  1. Wang, Y.; Elhag, T. On the normalization of interval and fuzzy weights. Fuzzy Sets Syst. 2006, 157, 2456-2471. [CrossRef]
  2. Pavlacka, O. On various approaches to normalization of interval and fuzzy weights. Fuzzy Sets Syst. 2014, 243, 110-130. [CrossRef]
  3. González, R.; Woods, R. Digital Image Processing, 3rd ed.; Pearson: Waltham Abbey, UK, 2007; p. 85.
  4. Daniel, F.; Julia, K. A Student's Guide to the Mathematics of Astronomy; Cambridge University Press: Cambridge, UK, 2013; p. 35.
  5. Sally, J.; Sally, P. Chapter 3: Pythagorean triples. In Roots to Research: A Vertical Development of Mathematical Problems; American Mathematical Society Bookstore: Providence, RI, USA, 2007; p. 63.
  6. Sadiq, A.; Almohammad, T.; Khadri, R.A.; Ahmed, A.A.; Lloret, J. An Energy-Efficient Cross-Layer approach for cloud wireless green communications. In Proceedings of the 2017 Second International Conference on Fog and Mobile Edge Computing (FMEC), Valencia, Spain, 8-11 May 2017; pp. 230-234.
  7. Fu, H.; Yang, L.; Zhou, C. A computer-aided geometric approach to inverse kinematics. J. Robot. Syst. 1998, 15, 131-143.
  8. Rukundo, O. Optimal Methods Research on Grayscale Image Interpolation; China National Knowledge Infrastructure CNKI, TP391.41: Beijing, China, 2012.
  9. Sheppard, W. Interpolation. In Encyclopaedia Britannica. 14, 11th ed.; Chisholm, H., Ed.; Cambridge University Press: Cambridge, UK, 1911; pp. 706-710.
  10. Rukundo, O. Evaluation of Rounding Functions in Nearest-Neighbour Interpolation. Int. J. Comput. Methods 2021, 18, 2150024. [CrossRef]
  11. Rukundo, O. Effects of Image Size on Deep Learning. arXiv 2021, arXiv:2101.11508.
  12. Tian, Q.C.; Wen, H.; Zhou, C.; Chen, W. A fast edge-directed interpolation algorithm. In International Conference on Neural Information Processing, LNCS; Huang, T.W., Zeng, Z.G., Li, C.D., Lueng, C.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7665, pp. 398-405.
  13. Khan, S.; Lee, D.; Khan, M.A.; Siddiqui, M.F.; Zafar, R.F.; Memon, K.H.; Mujtaba, G. Image Interpolation via Gradient Correlation- Based Edge Direction Estimation. Sci. Program. 2020, 2020, 5763837. [CrossRef]
  14. Huang, Z.; Cao, L. Bicubic interpolation and extrapolation iteration method for high resolution digital holographic reconstruction. Opt. Lasers Eng. 2020, 130, 106090. [CrossRef]
  15. Lee, Y.; Yu, N.; Tsai, C. An image-upscaling engine for 1080p to 4k using gradient-based interpolation. Int. J. Electron. 2020, 107, 1386-1405. [CrossRef]
  16. Xu, G.; Ling, R.; Deng, L.; Wu, Q.; Ma, W. Image interpolation via gaussian-sinc interpolators with partition of unity. Computers. Mater. Contin. 2020, 62, 309-319. [CrossRef]
  17. Zulkifli, N.A.B.; Karim, S.A.A.; Shafie, A.B.; Sarfraz, M.; Ghaffar, A.; Nisar, K.S. Image Interpolation Using a Rational Bi-Cubic Ball. Mathematics 2019, 7, 1045. [CrossRef]
  18. Rukundo, O.; Wu, K.; Cao, H. Image Interpolation Based on The Pixel Value Corresponding to The Smallest Absolute Difference. In Proceedings of the 4th International Workshop on Advanced Computational Intelligence, Wuhan, China, 19-21 October 2011; pp. 434-437.
  19. Rukundo, O.; Maharaj, B. Optimization of Image Interpolation based on Nearest Neighbour Algorithm. In Proceedings of the 9th International Conference on Computer Vision Theory and Applications (VISAPP 2014), Lisbon, Portugal, 5-8 January 2014; pp. 641-647.
  20. Rukundo, O.; Pedersen, M.; Hovde, Ø. Advanced Image Enhancement Method for Distant Vessels and Structures in Capsule Endoscopy. Comput. Math. Methods Med. 2017, 2017, 9813165. [CrossRef] [PubMed]
  21. Rukundo, O.; Schmidt, S. Aliasing Artefact Index for Image Interpolation Quality Assessment. In Proceedings of the SPIE 10817, Optoelectronic Imaging and Multimedia Technology V, Beijing, China, 7 November 2018; Volume 108171E.
  22. Rukundo, O. Half-Unit Weighted Bilinear Algorithm for Image Contrast Enhancement in Capsule Endoscopy. In Proceedings of the SPIE 10615, Ninth International Conference on Graphic and Image Processing (ICGIP 2017), Qingdao, China, 10 April 2018; Volume 106152Q.
  23. Rukundo, O.; Schmidt, E.; Ramm, O. Software Implementation of Optimized Bicubic Interpolated Scan Conversion in Echocar- diography. arXiv 2020, arXiv:2005.11269, 1-10.
  24. Rukundo, O. Effects of Empty Bins on Image Upscaling in Capsule Endoscopy. In Proceedings of the SPIE 10420, Ninth International Conference on Digital Image Processing (ICDIP 2017), Hong Kong, China, 21 July 2017; Volume 104202P.
  25. Rucka, M.; Wojtczak, E.; Zieli ńska, M. Interpolation methods in GPR tomographic imaging of linear and volume anomalies for cultural heritage diagnostics. Measurement 2020, 154, 107494. [CrossRef]
  26. Chen, Y.; Sun, W.; Li, L.; Chang, C.; Wang, X. An efficient general data hiding scheme based on image interpolation. J. Inf. Secur. Appl. 2020, 54, 102584. [CrossRef]
  27. Wang, X.; Jia, X.; Zhou, W.; Qin, X.; Guo, H. Correction for color artifacts using the RGB intersection and the weighted bilinear interpolation. Appl. Opt. 2019, 58, 8083-8091. [CrossRef]
  28. Hassan, F.; Gutub, A. Efficient reversible data hiding multimedia technique based on smart image interpolation. Multimed. Tools Appl. 2020, 79, 30087-30109. [CrossRef]
  29. Jiang, C.; Li, H.; Zhou, S.; Yu, J.; Chen, L.; Xie, X. Image interpolation model based on packet losing network. Multimed. Tools Appl. 2020, 79, 25785-25800. [CrossRef]
  30. De Feis, I.; Masiello, G.; Cersosimo, A. Optimal Interpolation for Infrared Products from Hyperspectral Satellite Imagers and Sounders. Sensors 2020, 20, 2352. [CrossRef] [PubMed]
  31. Moraes, T.; Amorim, P.; Da Silva, J.V.; Pedrini, H. Medical image interpolation based on 3D Lanczos filtering. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2020, 8, 294-300. [CrossRef]
  32. Huang, W.; Liu, J. Robust Seismic Image Interpolation with Mathematical Morphological Constraint. IEEE Trans. Image Process. 2020, 29, 819-829. [CrossRef]
  33. Song, G.; Qin, C.; Zhang, K.; Yao, X.; Bao, F.; Zhang, Y. Adaptive Interpolation Scheme for Image Magnification Based on Local Fractal Analysis. IEEE Access 2020, 8, 34326-34338. [CrossRef]
  34. Murad, M.; Bilal, M.; Jalil, A.; Ali, A.; Mehmood, K.; Khan, B. Efficient Reconstruction Technique for Multi-Slice CS-MRI Using Novel Interpolation and 2D Sampling Scheme. IEEE Access 2020, 8, 117452-117466. [CrossRef]
  35. Ji, J.; Zhong, B.; Ma, K. Image Interpolation Using Multi-Scale Attention-Aware Inception Network. IEEE Trans. Image Process. 2020, 29, 9413-9428. [CrossRef] [PubMed]
  36. Chung, K.; Chen, S. An effective bilinear interpolation-based iterative chroma subsampling method for color images. Mul- timed. Tools Appl. 2022, 81, 32191-32213. [CrossRef]
  37. Yu, L.; Liu, K.; Orchard, M.T. Orchard, Manifold-Inspired Single Image Interpolation. arXiv 2021, arXiv:2108.00145.
  38. Gao, C.; Zhou, R.; Li, X. Quantum color image scaling based on bilinear interpolation. Chin. Phys. B 2022. [CrossRef]
  39. Sadaghiani, A.; Sheikhaei, S.; Forouzandeh, B. Image Interpolation Based on 2D-DWT with Novel Regularity-Preserving Algorithm Using RLS Adaptive Filters. Int. J. Image Graph. 2022, 2350039. [CrossRef]
  40. Occorsio, D.; Ramella, G.; Themistoclakis, W. Image Scaling by de la Vallée-Poussin Filtered Interpolation. J. Math. Imaging Vis. 2022, 1-29. [CrossRef]
  41. Zhou, H.; Xu, Z.; Tian, Y.; Yu, Z.; Zhang, Y.; Ma, J. Interpolation-based nonrigid deformation estimation under manifold regularization constraint. Pattern Recognit. 2022, 128, 128695. [CrossRef]
  42. Fei, Y.; Shan, Z.; Salvador, E.; Kaoru, K.H. Implementing bilinear interpolation with quantum images. Digit. Signal Process. 2021, 117, 103149.
  43. Tavoosi, J.; Zhang, C.; Mohammadzadeh, A.; Mobayen, S.; Mosavi, A. Medical Image Interpolation Using Recurrent Type-2 Fuzzy Neural Network. Front. Neuroinform. 2021, 15, 667375. [CrossRef] [PubMed]
  44. Romano, Y.; Isidoro, J.; Milanfar, P. RAISR: Rapid and Accurate Image Super Resolution. IEEE Trans. Comput. Imaging 2017, 3, 110-125. [CrossRef]
  45. Dong, C.; Loy, C.; He, K.; Tang, X. Learning a Deep Convolutional Network for Image Super-Resolution. In FComputer Vision, ECCV; Leet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer: Cham, Switzerland, 2014; Volume 8692.
  46. Rukundo, O. Non-extra Pixel Interpolation. Int. J. Image Graph. 2020, 20, 2050031. [CrossRef]
  47. Rukundo, O.; Schmidt, S. Stochastic Rounding for Image Interpolation and Scan Conversion. Int. J. Adv. Comput. Sci. Appl. 2022, 13, 13-22. [CrossRef]
  48. Rukundo, O.; Schmidt, S. Effects of Rescaling Bilinear Interpolant on Image Interpolation Quality. In Proceedings of the SPIE 10817, Optoelectronic Imaging and Multimedia Technology V, Beijing, China, 2 November 2018; Volume 1081715.
  49. Rukundo, O.; Schmidt, S. Extrapolation for Image Interpolation. In Proceedings of the SPIE 10817, Optoelectronic Imaging and Multimedia Technology V, Beijing, China, 2 November 2018; Volume 108171F.
  50. Zhang, L.; Wu, X. An edge-guided image interpolation algorithm via directional filtering and data fusion. IEEE Trans. Image Process. 2006, 15, 2226-2238. [CrossRef]
  51. Li, X.; Orchard, M.T. Orchard: New edge-directed interpolation. IEEE Trans. Image Process. 2001, 10, 1521-1527.
  52. Rukundo, O.; Huang, M.; Cao, H. Optimization of Bilinear Interpolation Based on Ant Colony Algorithm. In Proceedings of the 2nd International Conference Electrical and Electronics Engineering, Macao, China, 1-2 December 2011; pp. 571-580.
  53. Rukundo, O.; Cao, H. Advances on Image Interpolation Based on Ant Colony Algorithm; SpringerPlus: Berlin/Heidelberg, Germany, 2016; Volume 5, p. 403.
  54. Rukundo, O.; Cao, H. Nearest Neighbor Value Interpolation. Int. J. Adv. Comput. Sci. Appl. 2012, 3, 25-30.
  55. Rukundo, O. Effects of Improved-Floor Function on the Accuracy of Bilinear Interpolation Algorithm. Comput. Inf. Sci. 2015, 8, 1-25. [CrossRef]
  56. Mittag, U.; Kriechbaumer, A.; Rittweger, J. A novel interpolation approach for the generation of 3D-geometric digital bone models from image stacks. J. Musculoskelet. Neuronal Interact. 2017, 17, 86-96.
  57. Wang, Y.; Zhang, Z.; Guo, B. 3D image interpolation based on directional coherence. In Proceedings of the IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA 2001), Kauai, HI, USA, 9-10 December 2001; pp. 195-202.
  58. Quadrilaterals. Available online: https://www.mathsisfun.com/quadrilaterals.html (accessed on 1 November 2020).
  59. List of Geometry and Trigonometry Symbols, Math Vault. Available online: https://mathvault.ca/hub/higher-math/math- symbols/geometry-trigonometry-symbols/ (accessed on 1 November 2020).
  60. USC-SIPI Image Database. Available online: http://sipi.usc.edu/database/database.php (accessed on 8 November 2020).
  61. Modified-USC-SIPI-Image-Database. Available online: https://github.com/orukundo/Modified-USC-SIPI-Image-Database (accessed on 8 November 2020).
  62. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process. 2004, 13, 600-612. [CrossRef]
  63. Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.