Academia.eduAcademia.edu

Outline

Number of Thrust Arcs for Extremal Orbital Transfers

2018, Analytical Solutions for Extremal Space Trajectories

https://doi.org/10.1016/B978-0-12-814058-1.00008-4

Abstract

Aim: Anthropogenic landscape change, such as urbanization, can affect community structure and ecological interactions. Furthermore, changes in ambient temperature and resource availability due to urbanization may affect migratory and non-migratory species differently. However, the response of migratory species to urbanization is poorly investigated, and knowledge for invertebrates in particular is lacking. Our aim was to investigate whether there was a shift in community structure and phenology of hoverflies in urban landscapes, depending on migratory status. Methods: Using a paired design, we compared urban and rural landscapes to investigate the impact of urbanization on the abundance, diversity and phenology of hoverflies. Furthermore, we tested whether migratory and non-migratory species responded differently to urbanization. We observed a difference in the response of migratory and non-migratory hoverfly communities. Although the abundance of hoverflies was higher in the rural ecosystem, driven by a high abundance of migratory species, there was no difference in species richness between the land use types. However, the community structure of non-migratory species was significantly different between urban and rural ecosystems. The phenology of hoverflies differed between the two ecosystems, with an earlier appearance in the year of migratory species in urban landscapes. To our knowledge, this is the first study to investigate the response of migratory insect communities to urbanization. We demonstrated that migratory and non-migratory hoverflies respond differently to urbanization. This highlights the importance of differentiating between trait and mobility groups to understand community assemblage patterns in anthropogenic landscapes. The differences in phenology supports the growing evidence that urbanization not only affects the phenology of vegetation, but also affects the higher trophic levels. Changes in the phenology and community composition of species as a result of anthropogenic landscape change may have important implications for the maintenance of key ecosystem functions, such as pollination.

References (64)

  1. O RCI D Myles H. M. Menz http://orcid.org/0000-0002-3347-5411
  2. Eva Knop http://orcid.org/0000-0001-9402-2216
  3. Alberti, M. (2005). The effects of urban patterns on ecosystem func- tion. International Regional Science Review, 28, 168-192. https://doi. org/10.1177/0160017605275160
  4. Aubert, J., Aubert, J.-J., & Goeldlin, P. (1976). Douze ans de captures sys- tématiques de Syrphides (Diptères) au col de Bretolet (Alpes valais- annes). Mitteilungen der Schweizerischen Entomologischen Gesellschaft, 49, 115-142.
  5. Baldock, K. C. R., Goddard, M. A., Hicks, D. M., Kunin, W. E., Mitschunas, N., Osgathorpe, L. M., … Memmott, J. (2015). Where is the UK's pollinator biodiversity? The importance of urban areas for flower- visiting insects. Proceedings of the Royal Society of London B: Biological Sciences, 282, 20142849. https://doi.org/10.1098/rspb.2014.2849
  6. Baselga, A. (2013). Separating the two components of abundance- based dissimilarity: Balanced changes in abundance vs. abundance gradients. Methods in Ecology and Evolution, 4, 552-557. https://doi. org/10.1111/2041-210X.12029
  7. Baselga, A., Orme, D., Villeger, S., De Bartoli, J., & Leprieur, F. (2013). betapart: Partitioning beta diversity into turnover and nestedness components. R package version 1.3. Retrieved from http://CRAN.R- project.org/package=betapart.
  8. Bates, D., Maechler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting lin- ear mixed-effects models using lme4. Journal of Statistical Software, 67, 1-48.
  9. Bates, A. J., Sadler, J. P., Fairbrass, A. J., Falk, S. J., Hale, J. D., & Matthews, T. J. (2011). Changing bee and hoverfly pollinator assemblages along an urban-rural gradient. PLoS ONE, 6, e23459. https://doi. org/10.1371/journal.pone.0023459
  10. Bauer, S., & Hoye, B. J. (2014). Migratory animals couple biodiversity and ecosystem functioning worldwide. Science, 344, 54-62.
  11. Burgio, G., & Sommaggio, D. (2007). Syrphids as landscape bioindicators in Italian agroecosystems. Agriculture, Ecosystems & Environment, 120, 416-422. https://doi.org/10.1016/j.agee.2006.10.021
  12. Cane, J. H., Minckley, R. L., Kervin, L. J., Roulston, T. H., & Neal, M. (2006). Complex responses within a desert bee guild (Hymenoptera: Apiformes) to urban habitat fragmentation. Ecological Applications, 16, 632-644. https://doi.org/10.1890/1051-0761(2006)016[0632:C RWADB]2.0.CO;
  13. Chapman, J. W., Reynolds, D. R., & Wilson, K. (2015). Long-range sea- sonal migration in insects: Mechanisms, evolutionary drivers and ecological consequences. Ecology Letters, 18, 287-302. https://doi. org/10.1111/ele.12407
  14. Cohen, J. E. (2003). Human population: The next half century. Science, 302, 1172-1175. https://doi.org/10.1126/science.1088665
  15. Comba, L., Corbet, S. A., Barron, A., Bird, A., Collinge, S. K., Miyazaki, N., & Powell, M. (1999). Garden flowers: Insect visits and the flo- ral reward of horticulturally-modified variants. Annals of Botany, 83, 73-86. https://doi.org/10.1006/anbo.1998.0798
  16. Deguines, N., Julliard, R., de Flores, M., & Fontaine, C. (2016). Functional homogenization of flower visitor communities with urbanization. Ecology and Evolution, 6, 1967-1976. https://doi.org/10.1002/ ece3.2009
  17. Elman, A., & Hill, J. (2009). Data analysis using regression and multilevel/ hierarchical models. New York, NY: Cambridge University Press.
  18. Evans, K. L., Newton, J., Gaston, K. J., Sharp, S. P., McGowan, A., & Hatchwell, B. J. (2012). Colonisation of urban environments is as- sociated with reduced migratory behaviour, facilitating divergence from ancestral populations. Oikos, 121, 634-640. https://doi. org/10.1111/j.1600-0706.2011.19722.x
  19. Faeth, S. H., Bang, C., & Saari, S. (2011). Urban biodiversity: Patterns and mechanisms. Annals of the New York Academy of Sciences, 1223, 69-81. https://doi.org/10.1111/j.1749-6632.2010.05925.x
  20. Gatter, W., & Schmid, U. (1990). Wanderungen der Schwebfliegen (Diptera, Syrphidae) am Randecker Maar. Spixiana, 15(Suppl.) 1-100.
  21. Gerard, F., Petit, S., Smith, G., Thomson, A., Brown, N., Manchester, S., … Feranec, J. (2010). Land cover change in Europe between 1950 and 2000 determined employing aerial photography. Progress in Physical Geography, 34, 183-205. https://doi.org/10.1177/0309133309360141
  22. Gilbert, F. (1985). Diurnal activity patterns in hoverflies. Ecological Entomology, 10, 385-392. https://doi.org/10.1111/j.1365-2311.1985. tb00736.x
  23. Graham-Taylor, L. G., Stubbs, A. E., & Brooke, M. D. L. (2009). Changes in phenology of hoverflies in a central England gar- den. Insect Conservation and Diversity, 2, 29-35. https://doi. org/10.1111/j.1752-4598.2008.00034.x
  24. Harrison, T., Gibbs, J., & Winfree, R. (2018). Forest bees are replaced in agricultural and urban landscapes by native species with different phenologies and life-history traits. Global Change Biology, 24, 287- 296. https://doi.org/10.1111/gcb.13921
  25. Harrison, T., & Winfree, R. (2015). Urban drivers of plant-pollinator interactions. Functional Ecology, 29, 879-888. https://doi. org/10.1111/1365-2435.12486
  26. Hart, M. A., & Sailor, D. J. (2009). Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island. Theoretical and Applied Climatology, 95, 397-406. https://doi. org/10.1007/s00704-008-0017-5
  27. Hondelmann, P., & Poehling, H.-M. (2007). Diapause and over- wintering of the hoverfly Episyrphus balteatus. Entomologia Experimentalis et Applicata, 124, 189-200. https://doi. org/10.1111/j.1570-7458.2007.00568.x
  28. Jauker, F., Bondarenko, B., Becker, H. C., & Steffan-Dewenter, I. (2012). Pollination efficiency of wild bees and hoverflies provided to oil- seed rape. Agricultural and Forest Entomology, 14, 81-87. https://doi. org/10.1111/j.1461-9563.2011.00541.x
  29. Jauker, F., Diekötter, T., Schwarzbach, F., & Wolters, V. (2009). Pollinator dispersal in an agricultural matrix: Opposing responses of wild bees and hoverflies to landscape structure and distance from main habitat. Landscape Ecology, 24, 547-555. https://doi.org/10.1007/ s10980-009-9331-2
  30. Jochner, S., & Menzel, A. (2015). Urban phenological studies -Past, present, future. Environmental Pollution, 203, 250-261. https://doi. org/10.1016/j.envpol.2015.01.003
  31. Jones, E., & Leather, S. (2012). Invertebrates in urban areas: A re- view. European Journal of Entomology, 109, 463-478. https://doi. org/10.14411/eje.2012.060
  32. Keil, P., Dziock, F., & Storch, D. (2008). Geographical patterns of hoverfly (Diptera, Syrphidae) functional groups in Europe: Inconsistency in en- vironmental correlates and latitudinal trends. Ecological Entomology, 33, 748-757.
  33. Kleijn, D., Kohler, F., Baldi, A., Batary, P., Concepcion, E. D., Clough, Y., … Verhulst, J. (2009). On the relationship between farmland bio- diversity and land-use intensity in Europe. Proceedings of the Royal Society B-Biological Sciences, 276, 903-909. https://doi.org/10.1098/ rspb.2008.1509
  34. Knop, E. (2016). Biotic homogenization of three insect groups due to urbanization. Global Change Biology, 22, 228-236. https://doi. org/10.1111/gcb.13091
  35. Leong, M., Ponisio, L. C., Kremen, C., Thorp, R. W., & Roderick, G. K. (2016). Temporal dynamics influenced by global change: Bee commu- nity phenology in urban, agricultural, and natural landscapes. Global Change Biology, 22, 1046-1053. https://doi.org/10.1111/gcb.13141
  36. Magura, T., Lövei, G. L., & Tóthmérész, B. (2010). Does urbaniza- tion decrease diversity in ground beetle (Carabidae) assem- blages? Global Ecology and Biogeography, 19, 16-26. https://doi. org/10.1111/j.1466-8238.2009.00499.x
  37. Maibach, A., Goeldlin de Tiefenau, P., & Dirickx, H. G. (1992). Check list of the Syrphidae occurring in Switzerland (Diptera). Miscellanea fau- nistica Helvetiae, 1, 1-51.
  38. Mckinney, M. L. (2008). Effects of urbanization on species richness: A review of plants and animals. Urban Ecosystems, 11, 161-176. https:// doi.org/10.1007/s11252-007-0045-4
  39. Mimet, A., Pellissier, V., Quénol, H., Aguejdad, R., Dubreuil, V., & Rozé, R. (2009). Urbanization induces early flowering: Evidence from Platanus acerifolia and Prunus cerasus. International Journal of Biometeorology, 53, 287-298. https://doi.org/10.1007/s00484-009-0214-7
  40. Møller, A. P., Jokimäki, J., Skorka, P., & Tryjanowski, P. (2014). Loss of migration and urbanization in birds: A case study of the blackbird (Turdus merula). Oecologia, 175, 1019-1027. https://doi.org/10.1007/ s00442-014-2953-3
  41. Öckinger, E., Dannestam, Å., & Smith, H. G. (2009). The importance of fragmentation and habitat quality of urban grasslands for butter- fly diversity. Landscape and Urban Planning, 93, 31-37. https://doi. org/10.1016/j.landurbplan.2009.05.021
  42. Odermatt, J., Frommen, J. G., & Menz, M. H. M. (2017). Consistent behavioural differences between migratory and resident hover- flies. Animal Behaviour, 127, 187-195. https://doi.org/10.1016/j. anbehav.2017.03.015
  43. Oke, T. R. (1973). City size and the urban heat island. Atmospheric Environment, 7, 119-131.
  44. Oksanen, J. (2014). Multivariate analysis of ecological communities in R: vegan tutorial. Retrieved from http://cc.oulu.fi/~jarioksa/opetus/ metodi/vegantutor.pdf
  45. Plummer, K. E., Siriwardena, G. M., Conway, G. J., Risely, K., & Toms, M. P. (2015). Is supplementary feeding in gardens a driver of evolutionary change in a migratory bird species? Global Change Biology, 21, 4353- 4363. https://doi.org/10.1111/gcb.13070
  46. R Core Team (2015). R: A language and environment for statistical comput- ing. Vienna, Austria: R Foundation for Statistical Computing.
  47. Rader, R., Bartomeus, I., Garibaldi, L. A., Garratt, M. P. D., Howlett, B. G., Winfree, R., … Woyciechowski, M. (2016). Non-bee insects are important contributors to global crop pollination. Proceedings of the National Academy of Sciences of the United States of America, 113, 146-151. https://doi.org/10.1073/pnas.1517092112
  48. Rader, R., Howlett, B. G., Cunningham, S. A., Westcott, D. A., Newstrom- Lloyd, L. E., Walker, M. K., … Edwards, W. (2009). Alternative polli- nator taxa are equally efficient but not as effective as the honeybee in a mass flowering crop. Journal of Applied Ecology, 46, 1080-1087. https://doi.org/10.1111/j.1365-2664.2009.01700.x
  49. Raymond, L., Sarthou, J.-P., Plantegenest, M., Gauffre, B., Ladet, S., & Vialatte, A. (2014). Immature hoverflies overwinter in cultivated fields and may significantly control aphid populations in autumn. Agriculture Ecosystems & Environment, 185, 99-105. https://doi. org/10.1016/j.agee.2013.12.019
  50. Rotheray, G., & Gilbert, F. (1999). Phylogeny of Palaearctic Syrphidae (Diptera): Evidence from larval stages. Zoological Journal of the Linnean Society, 127, 1-112. https://doi.org/10.1111/j.1096-3642.1999.tb01305.x
  51. Rundlöf, M., Persson, A. S., Smith, H. G., & Bommarco, R. (2014). Late- season mass-flowering red clover increases bumble bee queen and male densities. Biological Conservation, 172, 138-145. https://doi. org/10.1016/j.biocon.2014.02.027
  52. Satterfield, D. A., Maerz, J. C., & Altizer, S. (2015). Loss of migratory be- haviour increases infection risk for a butterfly host. Proceedings of the Royal Society of London B: Biological Sciences, 282, 20141734. https:// doi.org/10.1098/rspb.2014.1734
  53. Seto, K. C., Güneralp, B., & Hutyra, L. R. (2012). Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences of the United States of America, 109, 16083-16088. https://doi.org/10.1073/ pnas.1211658109
  54. Speight, M. C. D. (2014). Species accounts of European Syrphidae (Diptera), 2014. Syrph the Net, the database of European Syrphidae, vol. 78. Dublin, Ireland: Syrph the Net Publications.
  55. Stelzer, R. J., Chittka, L., Carlton, M., & Ings, T. C. (2010). Winter active bum- blebees (Bombus terrestris) achieve high foraging rates in urban Britain. PLoS ONE, 5, e9559. https://doi.org/10.1371/journal.pone.0009559
  56. Tenhumberg, B., & Poehling, H.-M. (1995). Syrphids as natural enemies of cereal aphids in Germany: Aspects of their biology and efficacy in different years and regions. Agriculture, Ecosystems & Environment, 52, 39-43. https://doi.org/10.1016/0167-8809(94)09007-T
  57. Tryjanowski, P., Sparks, T. H., Kuźniak, S., Czechowski, P., & Jerzak, L. (2013). Bird migration advances more strongly in urban environments. PLoS ONE, 8, e63482. https://doi.org/10.1371/journal.pone.0063482
  58. Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I., & Thies, C. (2005). Landscape perspectives on agricultural intensification and biodiversity -Ecosystem service management. Ecology Letters, 8, 857-874. https://doi.org/10.1111/j.1461-0248.2005.00782.x
  59. Turrini, T., & Knop, E. (2015). A landscape ecology approach identifies important drivers of urban biodiversity. Global Change Biology, 21, 1652-1667. https://doi.org/10.1111/gcb.12825
  60. UNFPA (2007). State of the World Population 2007: Unleashing the poten- tial of urban growth. New York, NY: United Nations Population Fund.
  61. Verboven, H. A. F., Uyttenbroeck, R., Brys, R., & Hermy, M. (2014). Different responses of bees and hoverflies to land use in an urban- rural gradient show the importance of the nature of the rural land use. Landscape and Urban Planning, 126, 31-41. https://doi.org/10.1016/j. landurbplan.2014.02.017
  62. B I OS K E TCH E S Katrin Luder conducted this research during her Masters stud- ies at the University of Bern. Katrin now works as an ecological consultant.
  63. Eva Knop is a group leader at the University of Bern and inter- ested in ecological and evolutionary consequences of global change drivers on biodiversity, species interactions and ecosys- tem functioning.
  64. Myles H. M. Menz is a group leader at the University of Bern and is interested in animal movement and migration, and the pro- cesses that drive species' responses to landscape change.