Deluge Harmony Search Algorithm For Nurse Rostering Problems
2019, 2019 First International Conference of Intelligent Computing and Engineering (ICOICE)
https://doi.org/10.1109/ICOICE48418.2019.9035163Abstract
Harmony search algorithm (HSA) is one of the relatively new metaheuristic algorithms that classified under population-based search algorithms. Based on literature, hybridizing local-based searching algorithms with population-based algorithms can improve the performance of hybridized algorithms. This research is an extension to our previous work that focus on solving Nurse Rostering Problems (NRP) using hybrid metaheuristic algorithms. One of the improved version of HSA is enhanced harmony search algorithm (EHSA) where it overcomes some of the weaknesses of basic HSA. Slow convergence is noticed in EHSA which encourage us to hybridize it with other metaheuristic algorithms to improve its performance. In this research, EHSA is hybridized with great deluge algorithm (GD) and called Deluged harmony search algorithm (DHSA). DHSA then compared to CHSA (the hybridization of EHSA with Hill climbing (HC)) which developed earlier. To strike the balance between exploration and exploitation, th...
References (55)
- P. Brucker, R. Qu, E. Burke, Personnel scheduling: Models and complexity, European Journal of Operational Research, 210 (2011) 467-473.
- Y.A. Ozcan, Quantitative Methods in Health Care Management: Techniques and Applications, Jossey-Bass/Wiley, San Francisco, CA, 2005.
- E.K. Burke, P. De Causmaecker, G.V. Berghe, H. Van Landeghem, The State of the Art of Nurse Rostering, Journal of Scheduling, 7 (2004) 441-499.
- P. De Causmaecker, G. Vanden Berghe, A categorisation of nurse rostering problems, Journal of Scheduling, 14 (2011) 3-16.
- E. Özcan, Memes, Self-generation and Nurse Rostering, in: Practice and Theory of Automated Timetabling VI, Springer Berlin / Heidelberg, 2007, pp. 85-104.
- E.K. Burke, G. Kendall, Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, in, Springer, 2005, pp. 620.
- E.G. Talbi, Metaheuristics: From Design to Implementation, Wiley Online Library, 2009.
- B. Cheang, H. Li, A. Lim, B. Rodrigues, Nurse Rostering Problems -A Bibliographic Survey, European Journal of Operational Research, 151 (2003) 447-460.
- A.T. Ernst, H. Jiang, M. Krishnamoorthy, D. Sier, Staff Scheduling and Rostering: A Review of Applications, Methods and Models, European Journal of Operational Research, 153 (2004) 3-27.
- J.R. Thornton, A. Sattar, Applied Partial Constraint Satisfaction Using Weighted Iterative Repair, in: Australian Joint Conference on Artificial Intelligence Springer, Verlag, 1997, pp. 57 -66.
- Y.A. Ozcan, Quantitative Methods in Health Care Management: Techniques and Applications, in, Jossey-Bass/Wiley, San Francisco, CA, 2005.
- U. Aickelin, K.A. Dowsland, An indirect Genetic Algorithm for a Nurse-Scheduling Problem, Computers & Operations Research, 31 (2004) 761-778.
- M. Moz, M.V. Pato, A Genetic Algorithm Approach to a Nurse Rerostering Problem, Journal of Computers and Operations Research, 34 (2007) 667-691.
- E.K. Burke, P. Causmaecker, G. Vanden Berghe, A Hybrid Tabu Search Algorithm for the Nurse Rostering Problem, in: Lecture Notes in Artificial Intelligence, Springer, 1998, pp. 187-194.
- K.A. Dowsland, Nurse scheduling with tabu search and strategic oscillation, European Journal of Operational Research, 106 (1998) 393-407.
- M. Hadwan, M. Ayob, A Constructive Shift Patterns Approach with Simulated Annealing for Nurse Rostering Problems, in: International Symposium in Information Technology (ITSim 2010) IEEE, Kuala Lumpur, Malaysia, 2010, pp. 1-6.
- C. Mingang, H.I. Ozaku, N. Kuwahara, K. Kogure, O. Jun, Simulated Annealing Algorithm for Daily Nursing Care Scheduling Problem, in: International Conference on Automation Science and Engineering, (CASE 2007), IEEE, 2007, pp. 507-512.
- E.K. Burke, T. Curtois, R. Qu, G.V. Berghe, A Scatter Search Methodology for the Nurse Rostering Problem, Journal of the Operational Research Society, 61 (2010) 1667-1679.
- Z.W. Geem, J.H. Kim, G.V. Loganathan, Original Harmony Search, A New Heuristic Optimization Algorithm: Harmony Search, Journal of Simulation, 76 (2001) 60-68.
- M.A. Al-Betar, A.T. Khader, A Harmony Search Algorithm for University Course Timetabling, Annals of Operations Research, (2010): 1-29.
- Z.W. Geem, K.S. Lee, Y. Park, Application of Harmony Search to Vehicle Routing, American Journal of Applied Sciences, 2 (2005) 1552-1557.
- Z.W. Geem, Harmony Search Algorithm for Solving Sudoku, Lecture Notes in Artificial Intelligence, (2007).
- M. El-Abd, Performance assessment of foraging algorithms vs. evolutionary algorithms, Information Sciences, 182 (2012) 243-263.
- R. Forsati, M. Mahdavi, M. Shamsfard, M. Reza Meybodi, Efficient stochastic algorithms for document clustering, Information Sciences, 220 (2013) 269-291.
- L. Liu, H. Zhou, Hybridization of Harmony Search with Variable Neighborhood Search for Restrictive Single-machine Earliness / Tardiness Problem, Information Sciences.
- P. Yadav, R. Kumar, S.K. Panda, C.S. Chang, An Intelligent Tuned Harmony Search algorithm for optimisation, Information Sciences, 196 (2012) 47-72.
- A.R. Yildiz, A comparative study of population-based optimization algorithms for turning operations, Information Sciences, 210 (2012) 81-88.
- K.S. Lee, Z.W. Geem, A New Meta-heuristic Algorithm for Continuous Engineering Optimization: Harmony Search Theory and Practice, Computer Methods in Applied Mechanics and Engineering, 194 (2005) 3902-3933.
- X.S. Yang, Nature-Inspired Metaheuristic Algorithms, Luniver Press, 2008.
- M.A. Awadallah, A.T. Khader, M.A. Al-Betar, A.L. Bolaji, Nurse Scheduling Using Harmony Search, in: Sixth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA), 2011, pp. 58-63.
- A.E. Eiben, M. Zbigniew, M. Schoenauer, J.E. Smith, Parameter Control in Evolutionary Algorithms, in: F.G. Lobo, C.F. Lima, Z. Michalewicz (Eds.) Parameter Setting in Evolutionary Algorithms Springer, Charlotte, 2007, pp. 19-46.
- T. Curtois, Personnel scheduling data sets and benchmarks, in, University of Nottingham, 2009.
- G. Ingram, T. Zhang, Overview of Applications and Developments in the Harmony Search Algorithm, in: Z.W. Geem (Ed.) Music-Inspired Harmony Search Algorithm, Springer Berlin / Heidelberg, 2009, pp. 15-37.
- X.S. Yang, Harmony Search as a Metaheuristic Algorithm, in: Z.W. Geem (Ed.) Music- Inspired Harmony Search Algorithm, Springer Berlin / Heidelberg, 2009, pp. 1-14.
- S. Petrovic, G. Vanden Berghe, A comparison of two approaches to nurse rostering problems, Annals of Operations Research, (2010) 1-20.
- M. Hadwan, M.B. Ayob, An Exploration Study of Nurse Rostering Practice at Hospital Universiti Kebangsaan Malaysia, in: 2nd Conference on Data Mining and Optimization, 2009. DMO '09. , IEEE, Bangi, Selangor Malaysia, 2009, pp. 100 -107.
- P. Brucker, E.K. Burke, T. Curtois, R. Qu, G. Vanden Berghe, A shift Sequence Based Approach for Nurse Scheduling and a New Benchmark Dataset, Journal of Heuristics, 16 (2010) 559-573.
- E.K. Burke, T. Curtois, G. Post, R. Qu, B. Veltman, A Hybrid Heuristic Ordering and Variable Neighbourhood Search for the Nurse Rostering Problem, European Journal of Operational Research, 188 (2008) 330-341.
- T. Curtois, Gabriela Ochoa, Matthew Hyde, J.A. Vázquez-Rodríguez, A HyFlex Module for the Personnel Scheduling Problem, Technical Report, School of Computer Science, University of Nottingham, (2010) 1-12.
- E.K. Burke, Tim Curtois, Matthew Hyde, Gabriela Ochoa, Jose A. Vazquez-Rodriguez, HyFlex: A Benchmark Framework for Cross-domain Heuristic Search, arXiv.org, (2011) 28.
- K.S. Lee, Z.W. Geem, A New Structural Optimization Method Based on the Harmony Search Algorithm, Journal of Computers and Structures, 82 (2004) 781-798.
- B. Maenhout, M. Vanhoucke, An Electromagnetic Meta-heuristic for the Nurse Scheduling Problem, Journal of Heuristics, 13 (2007) 359-385.
- P. Brucker, R. Qu, E.K. Burke, G. Post, A Decomposition, Construction and Post- processing Approach for A Specific Nurse Rostering Problem, in: G. Kendall, Lei, L., Pinedo, M. (Ed.) 2nd Multidisciplinary International Conference on Scheduling: Theory and Applications (MISTA'05), New York, USA, 2005, pp. 397-406.
- A. Ikegami, A. Niwa, A Subproblem-centric Model and Approach to the Nurse Scheduling Problem, Journal of Mathematical Programming 97 (2003) 517-541.
- M. Mahdavi, M. Fesanghary, E. Damangir, An improved harmony search algorithm for solving optimization problems, Applied Mathematics and Computation, 188 (2007) 1567- 1579.
- R. Poli, W.B. Langdon, Foundations of Genetic Programming, Springer-Verlag, Berlin, Germany, 2002.
- P.V. Ravikumar, B.K. Panigrahi, Dynamic Economic Load Dispatch using Hybrid Swarm Intelligence Based Harmony Search Algorithm, in: Expert Systems with Applications, 2011, pp. 8509-8514.
- I.H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press., Michigan, 1975.
- R. Bai, E.K. Burke, G. Kendall, J. Li, B. McCollum, A hybrid evolutionary approach to the nurse rostering problem, IEEE Transactions on Evolutionary Computation, 14 (2010) 580-590.
- H. Kawanaka, K. Yamamoto, T. Yoshikawa, T. Shinogi, S. Tsuruoka, Genetic algorithm with the constraints for nurse scheduling problem, in: The 2001 Congress on Evolutionary Computation, 2001, pp. 1123-1130.
- U. Aickelin, K. Dowsland, Exploiting problem structure in a genetic algorithm approach to a nurse rostering problem, Journal of Scheduling, 3 (2000) 139-153.
- M. Ohki, A. Morimoto, K. Miyake, Nurse Scheduling by Using Cooperative GA with Efficient Mutation and Mountain-Climbing Operators, in: 3rd International Conference on Intelligent Systems, 2006 IEEE, 2006, pp. 164-169.
- M. Azaiez, S. Al Sharif, A 0-1 Goal Programming Model for Nurse Scheduling, Computer Operational Research, 32 (2005) 491-507.
- E. Burke, P. Cowling, P. De Causmaecker, G. Vanden Berghe, A Memetic Approach to the Nurse Rostering Problem, Applied Intelligence, 15 (2001) 199-214.
- S. García, A. Fernández, J. Luengo, F. Herrera, Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power, Information Sciences, 180 (2010) 2044-2064.