Academia.eduAcademia.edu

Outline

The bottleneck may be the solution, not the problem

2016, Behavioral and Brain Sciences

Abstract

As a highly consequential biological trait, a memory “bottleneck” cannot escape selection pressures. It must therefore co-evolve with other cognitive mechanisms rather than act as an independent constraint. Recent theory and an implemented model of language acquisition suggest that a limit on working memory may evolve to help learning. Furthermore, it need not hamper the use of language for communication.

References (30)

  1. Anderson, M. L. (2010). Neural re-use as a fundamental organizational principle of the brain. Behavioral and Brain Sciences, 34:245-266.
  2. Blokland, G. A. M., McMahon, K. L., Thompson, P. M., Martin, N. G., de Zubicaray, G. I., and Wright, M. J. (2011). Heritability of working memory brain activation. The Journal of Neuroscience, 31:10882- 10890.
  3. Burghardt, G. M. (1970). Defining 'communication'. In Johnston Jr., J. W., Moulton, D. G., and Turk, A., editors, Communication by Chemical Signals. Century-Crofts, New York.
  4. Chater, N. and Christiansen, M. H. (2010). Language acquisition meets language evolution. Cognitive Science, 34:1131-1157.
  5. Cui, J., Gao, D., Chen, Y., Zou, X., and Wang, Y. (2010). Working memory in early-school-age children with Asperger's syndrome. J. Autism Dev. Disord., 40:958-967.
  6. Edelman, S. (2008a). Computing the mind: how the mind really works. Oxford University Press, New York, NY.
  7. Edelman, S. (2008b). On the nature of minds, or: Truth and consequences. Journal of Experimental and Theoretical AI, 20:181-196.
  8. Edelman, S. (2015). The minority report: some common assumptions to reconsider in the modeling of the brain and behavior. Journal of Experimental and Theoretical Artificial Intelligence, 27:-. in press.
  9. Falconer, D. S. (1981). Introduction to quantitative genetics. Longman.
  10. Goldstein, M. H., Waterfall, H. R., Lotem, A., Halpern, J., Schwade, J., Onnis, L., and Edelman, S. (2010). General cognitive principles for learning structure in time and space. Trends in Cognitive Sciences, 14:249-258.
  11. Green, S. and Marler, P. (1979). The analysis of animal communication. In Marler, P. and Vandenbergh, J. G., editors, Handbook of behavioral neurobidlogy: Vol.3. Social behavior and communication, pages 73-158. Plenum Press, New York.
  12. Kolodny, O., Edelman, S., and Lotem, A. (2014). The evolution of continuous learning of the structure of the environment. Journal of the Royal Society Interface, 11:20131091.
  13. Kolodny, O., Edelman, S., and Lotem, A. (2015a). Evolution of protolinguistic abilities as a byproduct of learning to forage in structured environments. Proceedings of the Royal Society of London B. In press.
  14. Kolodny, O., Lotem, A., and Edelman, S. (2015b). Learning a generative probabilistic grammar of experi- ence: a process-level model of language acquisition. Cognitive Science, 39:227-267.
  15. Lachmann, M., Számadó, S., and Bergstrom, C. T. (2001). Cost and conflict in animal signals and human language. Proceedings of the National Academy of Science, 98:13189-13194.
  16. Leger, D. W. (1993). Contextual sources of information and responses to animal communication signals. Psychological Bulletin, 113:295-304.
  17. Lind, J., Enquist, M., and Ghirlanda, S. (2015). Animal memory: A review of delayed matching-to-sample data. Behavioural Processes. In press.
  18. Lotem, A. and Halpern, J. Y. (2012). Coevolution of learning and data-acquisition mechanisms: a model for cognitive evolution. Phil. Trans. R. Soc. B, 367:2686-2694.
  19. Lotem, A. and Halpern, Y. J. (2008). A data-acquisition model for learning and cognitive development and its implications for autism. Computing and information science technical reports, Cornell University. Available online at http://hdl.handle.net/1813/10178.
  20. Menyhart, O., Kolodny, O., Goldstein, M. H., Devoogd, T., and Edelman, S. (2015). Juvenile zebra finches learn the underlying statistical regularities in their father's song. Frontiers in Psychology, 6:571.
  21. Mery, F., Belay, A. T., So, A. K., Sokolowski, M. B., and Kawecki, T. J. (2007). Natural polymorphism af- fecting learning and memory in Drosophila. Proceedings of the National Academy of Science, 104:13051- 13055.
  22. Mueller, S. T. and Krawitz, A. (2009). Reconsidering the two-second decay hypothesis in verbal working memory. Journal of Mathematical Psychology, 53:14-25.
  23. Odling-Smee, F. J., Laland, K. N., and Feldman, M. W. (2003). Niche construction: the neglected process in evolution, volume MPB 37. Princeton University Press, Princeton, NJ.
  24. Onnis, L. and Spivey, M. J. (2012). Toward a new scientific visualization for the language sciences. Infor- mation, 3:124-150.
  25. Onnis, L., Waterfall, H. R., and Edelman, S. (2008). Learn locally, act globally: Learning language from variation set cues. Cognition, 109:423-430.
  26. Solan, Z., Horn, D., Ruppin, E., and Edelman, S. (2005). Unsupervised learning of natural languages. Proceedings of the National Academy of Science, 102:11629-11634.
  27. Stephens, D. W. and Krebs, J. R. (1986). Foraging Theory. Princeton University Press, Princeton, NJ.
  28. Stromswold, K. (2001). The heritability of language: A review and metaanalysis of twin, adoption, and linkage studies. Language, 77:647-723.
  29. van Soelen, I. L. C., Brouwer, R. M., van Leeuwen, M., Kahn, R. S., Hulshoff Pol, H. E., and Boomsma, D. I. (2011). Heritability of verbal and performance intelligence in a pediatric longitudinal sample. Twin Research and Human Genetics, 14:119-128.
  30. Vogler, C., Gschwind, L., Coyne, D., Freytag, V., Milnik, A., Egli, T., Heck, A., de Quervain, D. J., and Papassotiropoulos, A. (2014). Substantial SNP-based heritability estimates for working memory perfor- mance. Translational Psychiatry, 4:e438.