The bottleneck may be the solution, not the problem
2016, Behavioral and Brain Sciences
Abstract
As a highly consequential biological trait, a memory “bottleneck” cannot escape selection pressures. It must therefore co-evolve with other cognitive mechanisms rather than act as an independent constraint. Recent theory and an implemented model of language acquisition suggest that a limit on working memory may evolve to help learning. Furthermore, it need not hamper the use of language for communication.
References (30)
- Anderson, M. L. (2010). Neural re-use as a fundamental organizational principle of the brain. Behavioral and Brain Sciences, 34:245-266.
- Blokland, G. A. M., McMahon, K. L., Thompson, P. M., Martin, N. G., de Zubicaray, G. I., and Wright, M. J. (2011). Heritability of working memory brain activation. The Journal of Neuroscience, 31:10882- 10890.
- Burghardt, G. M. (1970). Defining 'communication'. In Johnston Jr., J. W., Moulton, D. G., and Turk, A., editors, Communication by Chemical Signals. Century-Crofts, New York.
- Chater, N. and Christiansen, M. H. (2010). Language acquisition meets language evolution. Cognitive Science, 34:1131-1157.
- Cui, J., Gao, D., Chen, Y., Zou, X., and Wang, Y. (2010). Working memory in early-school-age children with Asperger's syndrome. J. Autism Dev. Disord., 40:958-967.
- Edelman, S. (2008a). Computing the mind: how the mind really works. Oxford University Press, New York, NY.
- Edelman, S. (2008b). On the nature of minds, or: Truth and consequences. Journal of Experimental and Theoretical AI, 20:181-196.
- Edelman, S. (2015). The minority report: some common assumptions to reconsider in the modeling of the brain and behavior. Journal of Experimental and Theoretical Artificial Intelligence, 27:-. in press.
- Falconer, D. S. (1981). Introduction to quantitative genetics. Longman.
- Goldstein, M. H., Waterfall, H. R., Lotem, A., Halpern, J., Schwade, J., Onnis, L., and Edelman, S. (2010). General cognitive principles for learning structure in time and space. Trends in Cognitive Sciences, 14:249-258.
- Green, S. and Marler, P. (1979). The analysis of animal communication. In Marler, P. and Vandenbergh, J. G., editors, Handbook of behavioral neurobidlogy: Vol.3. Social behavior and communication, pages 73-158. Plenum Press, New York.
- Kolodny, O., Edelman, S., and Lotem, A. (2014). The evolution of continuous learning of the structure of the environment. Journal of the Royal Society Interface, 11:20131091.
- Kolodny, O., Edelman, S., and Lotem, A. (2015a). Evolution of protolinguistic abilities as a byproduct of learning to forage in structured environments. Proceedings of the Royal Society of London B. In press.
- Kolodny, O., Lotem, A., and Edelman, S. (2015b). Learning a generative probabilistic grammar of experi- ence: a process-level model of language acquisition. Cognitive Science, 39:227-267.
- Lachmann, M., Számadó, S., and Bergstrom, C. T. (2001). Cost and conflict in animal signals and human language. Proceedings of the National Academy of Science, 98:13189-13194.
- Leger, D. W. (1993). Contextual sources of information and responses to animal communication signals. Psychological Bulletin, 113:295-304.
- Lind, J., Enquist, M., and Ghirlanda, S. (2015). Animal memory: A review of delayed matching-to-sample data. Behavioural Processes. In press.
- Lotem, A. and Halpern, J. Y. (2012). Coevolution of learning and data-acquisition mechanisms: a model for cognitive evolution. Phil. Trans. R. Soc. B, 367:2686-2694.
- Lotem, A. and Halpern, Y. J. (2008). A data-acquisition model for learning and cognitive development and its implications for autism. Computing and information science technical reports, Cornell University. Available online at http://hdl.handle.net/1813/10178.
- Menyhart, O., Kolodny, O., Goldstein, M. H., Devoogd, T., and Edelman, S. (2015). Juvenile zebra finches learn the underlying statistical regularities in their father's song. Frontiers in Psychology, 6:571.
- Mery, F., Belay, A. T., So, A. K., Sokolowski, M. B., and Kawecki, T. J. (2007). Natural polymorphism af- fecting learning and memory in Drosophila. Proceedings of the National Academy of Science, 104:13051- 13055.
- Mueller, S. T. and Krawitz, A. (2009). Reconsidering the two-second decay hypothesis in verbal working memory. Journal of Mathematical Psychology, 53:14-25.
- Odling-Smee, F. J., Laland, K. N., and Feldman, M. W. (2003). Niche construction: the neglected process in evolution, volume MPB 37. Princeton University Press, Princeton, NJ.
- Onnis, L. and Spivey, M. J. (2012). Toward a new scientific visualization for the language sciences. Infor- mation, 3:124-150.
- Onnis, L., Waterfall, H. R., and Edelman, S. (2008). Learn locally, act globally: Learning language from variation set cues. Cognition, 109:423-430.
- Solan, Z., Horn, D., Ruppin, E., and Edelman, S. (2005). Unsupervised learning of natural languages. Proceedings of the National Academy of Science, 102:11629-11634.
- Stephens, D. W. and Krebs, J. R. (1986). Foraging Theory. Princeton University Press, Princeton, NJ.
- Stromswold, K. (2001). The heritability of language: A review and metaanalysis of twin, adoption, and linkage studies. Language, 77:647-723.
- van Soelen, I. L. C., Brouwer, R. M., van Leeuwen, M., Kahn, R. S., Hulshoff Pol, H. E., and Boomsma, D. I. (2011). Heritability of verbal and performance intelligence in a pediatric longitudinal sample. Twin Research and Human Genetics, 14:119-128.
- Vogler, C., Gschwind, L., Coyne, D., Freytag, V., Milnik, A., Egli, T., Heck, A., de Quervain, D. J., and Papassotiropoulos, A. (2014). Substantial SNP-based heritability estimates for working memory perfor- mance. Translational Psychiatry, 4:e438.